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BOUNDS FOR THE BETTI NUMBERS
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(Communicated by Wolmer V. Vasconcelos)

Abstract. Upper bounds for the Betti numbers of generalized Cohen-Macaulay

ideals are given. In particular, for the case of non-degenerate, reduced and ir-

reducible projective curves we get an upper bound which only depends on their

degree.

0. Introduction

Let / be a homogeneous ideal of a polynomial ring S = K[xi, ... , xn] over

a field K, R = S/I, M:=(xx,...,x„),m = MR and e = e(I) := e(R) the
multiplicity of R/I. I is said to have a property P if R has this property P.

It is a classical question to give upper and lower bounds for the Betti numbers,

ßt, of S/I. A well-known conjecture due to Buchsbaum-Eisenbud says that

ßi(S/I) > (") for 0-dimensional ideals, and very recently Valla has given sharp

upper bounds for the case of CM. ideals (see [V]). The goal of this paper

is to extend Valla's result to generalized CM. ideals, i.e. ideals whose local

cohomology modules H'm(R) are of finite length for all i < dim(R). As in [H],

the key point is to reduce the computation to the case of CM. ideals.
Now we give a brief description of the paper. In § 1, we fix notations and recall

some results needed later on. In §2, in order to prove our main result (Theorem

2.6), we first reduce to the case of 0-dimensional ideals and then we extend

Valla's bounds to arbitrary (not necessarily non-degenerate) 0-dimensional ide-
als. As a consequence and related to Buchsbaum-Eisenbud's conjecture we get

the upper bound ßi(S/I) < (")e for the Betti numbers of any homogeneous

0-dimensional ideal /. In the last section, applying our results we obtain up-

per bounds for the Betti numbers of the homogeneous ideal of some special

projective schemes. In particular, for the case of non-degenerate, reduced and

irreducible projective curves, C, we get an upper bound which only depends

on the degree of the curve C .
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1. Notation and preliminaries

Throughout this paper we make the following conventions:

q) = 1   ifm>0,       and       (?) = °   if »i < fc.

The following combinatorial formulae will be useful to us:

ç)+-C70-(ï:î)-G"+"î
c + i - 1\ _ ic + a - l\ (c + b

i      )"\      a      )\c + a
(L2)       £G

1=0 v

If zn and z are positive integers, then m can be written uniquely in the form

m-(m/io)+(m/-V0+,"+(my)

where zzz(z') > zzz(z - 1) > •• • > m(j) > j > 1. This is called the z-binomial

expansion of zzz. We let

m(¡) = fm(i) + 1\ + fm(i - 1) + 1\ + fm(f) + 1

(m(i)-\\     (m(i-l)-l\ (m(j)-l\

and 0<'> = 0. We define z-(,)(0) := r and inductively r^,)^) = (^rxjt—1))</> •

If / is a 0-dimensional ideal we denote its Hubert function by Hs/i.
(1.4) Following [ERV], §4, we denote by J(e, h) the unique 0-dimensional

lex-segment ideal in S = K[xi, ... , x„] with the Hubert function HS/j(e,h) =

( 1, /z, (A+!), ... , (h~l!_x~2), r, 0, ... ), where t = t(e, h) is the unique integer

such that (h+!_-1) <e< (h?) and r = r(e, h) = e - (h^~l) ■ We set i(e, 0) :=

1.
(1.5) For p = 0, ... , h - I, denote by Jp(e, h) (resp. 7P) the image of

J(e, h) (resp. /) in the polynomial ring Sp :— K[xi, ... , xp] under the canon-

ical projection.
For short we also use the notation ep(e, h) = e(Sp/ Jp(e, h)). In particular,

eo(e, A) = 1. By [V], eq(e, n) = ('-J+<?) + r{t){n_q) for all 0 < q < n - 1.

(1.6) Let H=(l,H(l),...,H(a),...) and L = (1, L(l), ... , L(b), .,.)
be the Hubert functions of two 0-dimensional homogeneous ideals of some

polynomials rings, where H(a) ¿ 0 and L(b) ^ 0. We write H- > L if
H(i)>L(i) for z' = 0, ... , a- 1.

(1.7) By [ERV], Corollary 2.8, HSk_l/Jh_l(e,h)(n) = (Hs/J{e,h)(n)){n) for all

zz> 1.
The following lemma will be useful to us and it is essentially contained in

the proof of [ERV], Theorem 3.10.
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Lemma 1.8. Assume that 1 < h < h'. Then, for all p > I, we have en-p(e, h) <

eh'-p(e,h').

Proof. Since e(e, h - p) - 0 for p > h , we have only to consider the case 1 <

p < h - 1. Let S = K[xi, ... , xn] and S' = K[xx, ... , xnl\. By the definition
of t and t' in (1.4) we have t' = t'(e, h') < t = t(e, h). Hence, by (1.4) and

(1.6), Hs,ij(e>h,y> Hs/j{e,h). Moreover e(S'/J(e,h')) = e(S/J(e,h)) = e.
By repeated application of [ERV], Lemma 3.9, and (1.7) we get en-p(e, h) <

eh>-p(e, h'), as required.

(1.9) (See [V], Proposition 2.) Let / be a 0-dimensional non-degenerated
lex-segment ideal of S. Then, for every i = 1, ... , zz we have

ßt(S/I)= ¿2 (¿Msp/ip).

(1.10) For the basic properties of Buchsbaum as well as generalized CM.

rings we refer the reader to the book [SV]. A ring R is called a generalized
CM. ring if the length of the local cohomology modules Hlm(R) is finite for

all i < dim(R). In this case we set I(R) := ©f^1 ("^^/(//¿(R)). R is a
generalized CM. ring if and only if there exists a positive integer k such that

mk is an R-standard ideal. R is called a Buchsbaum ring if m is an R-standard

ideal.

2. Main results

All results of §2 also hold for ideals of a regular local ring. For the simplicity
of formulation we restrict our attention to the case of homogeneous ideals in a
polynomial ring.

Recall that a homogeneous element x £ m is called a superficial element of

order 1 for m if there exists a positive integer p such that (mq: x)nmp = mi_1

for q » 0. For the properties of superficial elements see, e.g., [S].

Lemma 2.1. If x £ m is a superficial element of order 1 for m, then its image

in R/(0: x) is a superficial element of order 1 for m/(0: x).

Let I c S = K[xx, ... , x„] be a homogeneous ideal. Set R = S/I.

Lemma 2.2. Assume that I is a generalized CM. ideal and dim(R) = d. Let

Ô = depth(R). Then, for all 1 < z < zz we have

«s'"s(("m')-("ííí'))",i| + «í"»'

where J is a 0-dimensional ideal of a polynomial ring S' = K[vi, ... , yn-d)
with e(J) = e(I).

Proof. Assume that S = 0. Let x (resp. the image of x) be a homogeneous
superficial element of order 1 for 971 (resp. for m) (see [S], p. 7, for the

existence of x). Consider the exact sequence

0 -» (0: x) - R -> R/(0: x) - 0.

Note that /((0: x)) < /(//m(R)) < I(R). Applying the functor Tor^K, •) to
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the above exact sequence we get

ßi(S/I) = dim Torf (K, R) < dim Torf (K, (0: x)) + dim Torf (K, R/(0: x))

< fnV(R) + dim Torf (K, R/(0: x)).

By [HSV], Lemma 1,

Torf (K, R/(0: x)) s Torf'(K, R/(0: x + xR)) = ßi(Sx/Jx),

where Si := S/(x)Jx = (I: x) + (x)/(x) c Si is again a polynomial ring and Jx
is a homogeneous ideal. By Lemma 2.1, the image of x is a superficial element

of order 1 for R/(0: x). Moreover, the image of x is a non-zero divisor of

R/(0: x). Hence, e(Jx) = e(R/(0: x)) = e(I). Repeating this process we get

ft(5//)<((^ + ...+ ("-f+1));W + ft(S7/)

-((;:0-("7i.1))w+«îw-
where / is a 0-dimensional ideal of a polynomial ring S' = K[yx, ... , yn-d\

with e(J) = e(I).

If 6 > 0, then in the first ô steps we have Torf (K, 0: x) = 0, and the result
easily follows.

Let ßi(e, n) = ßi(S/J(e, zz)) be Valla's bound for the z'th Betti number

of non-degenerate 0-dimensional ideals in K[xx, ... , xn] with multiplicity e

([V], Theorem 4). We set ßt(e, n) =1 if í = 0 and ßt(e, n) = 0 if i < 0.
We will extend Valla's results to any 0-dimensional ideal.

Lemma 2.3. Let I c K[xi, ... , xn] be a 0-dimensional ideal of multiplicity

e(I) -e. Set 1 = dimK(/\9JÎ2) <g> K. Then, for all i = 1, ... , zz, we have

ßt(S/I)<J2(l)ßi-j(^n-l).
j=0 ^

Proof. We proceed by induction on /. For / = 0 it follows from (1.9). Assume

/ > 0 ; let x £ I\M2 be any linear form. By changing the coordinates we can

assume that x = xn ■ Let V — I/xS, S' = S/xS = KLxi, ... , xn-X]. Then

dim(P\9Jt'2) ®. K = / - 1 and e(I') - e(I). By [HSV], Lemma 1 and the
induction hypothesis we have the following required result:

ßiWVißi-xV'/i^ + ßtS'/I')

< ¿ (7 "T *) A_i_y(*, (#1 - 1) - (/ - 1))
7=0 ^    J     '

+ Yl(l~l)ßi-j(e,(n-l)-(l-l))

7=0 ^    J    '

= ßi-l(e,n-l) + ^(([ll^ + ^-.l^ßl-j(e,n-l) + ßi(e,n)

= ¿ZÍ%i-Ae,n-l).
j=0 KJ/
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Lemma 2.4. Let I be a 0-dimensional ideal of S of multiplicity e. Denote

zz* = min(e - 1, n), and define t*, r* after the formulae in (1.4) for e and

n*. Then, for all i = 1, ... , zz, we have

™»*{rriyr?r-iyxUi)+»>--
Proof Set / = dimK(I\M;2) ® K. If zz = /, then I = (xx,... , xn) and the
above formula is trivially true. Assume zz - / > 1. By Lemma 2.3 and (1.9) we
have

min(i—1,/)I     /A min(;-l,Z) /A /A

ßt(S/I) < £ (¡Jßi-Ae, « -I) =     £ kw(e, zz - /) + (
7=0  ^' 7=0 ^' ^ '

Since E^S-^i0 (')C-^-i) < (f_{) and ep = 0 for p < 0, by Lemma 1.8 we
have

n-Z-l

W//)<Q+ ¿2  ^[)ep(e,n-l)

iQ^E^iy^-in-iHpie,"*)

= Q+E(/!1>—(esn*)

1)+   E    (^j)^.-»^^,«*).
?=max(/,i — 1)

Hence, using (1.5), we get

B-l

9=max(/, i—l)

n—l / \

+ ¿2, (/_ 1 )r*i*)(«-9)
?=max(/,i-l) x '

£(0+..E..i,!1)(";i7^l,G-,K...»)•
9=max(Z,i'-l)   v" /       9=/-l
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If / < i, (') = 0, and if / > i, we have

9=1-1    v 9=1-1

So in both cases we obtain

«-1 / \   /**       i   ,      \ n—l

ChJLG^X^-t'KI.G'Orr4)
ft * + i - 2\ ft* + n - 1\

= V t*-l  )\r + i-i)'

9=max(/,i'-l) 9=1-1

which completes the proof of the lemma.

Remark 2.4.1. If e - 1 > zz, then n = n* and we get exactly the same bound

as Valla's bound for non-degenerate ideals ([V], Proposition 5(i)). Hence, we
cannot improve Lemma 2.4 unless one involves /. But / is not defined explicitly

in our consideration.

Remark 2.4.2. Since ep(e, n*) = length(Sp/Jp(e, zz*)) < e — (n* — p) for all

0 < p < n* - 1, from the proof of Lemma 2.4 we get another estimation:

n-l

*ws¿G-.)"G>
9=í-l

For zz = zz* we get a little more:

n-i   /        \ / \ i-

=5-'-c;;)-(")=c>-S:::
It is interesting to compare this last result with the conjecture that ßt(S/I) >

Lemma 2.5.  z-(r>(„_9) < (/+?,-1) for all 0 < q < n .

From Lemma 2.2 and Lemma 2.4 we get

Theorem 2.6. Assume that I is a generalized CM. ideal of ht(I) - h in

K[xx, ... , x„] ; ô = depth(R). Let h* = min^ - 1, h) and t*, r* be defined
for e and h*. Then for all 1 < i < n we have

(t* + i-2\(t* + h-l\      ^//i\t

<A(r+xr(h¡ti))'^krx:,i)-
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Proof. The first inequality follows immediately from Lemma 2.2 and Lemma

2.4. Further, by Lemma 2.5 we have

h-l    , v h-l

p=i—l  v P=i— 1

h-l

ëx-îO^EOfor

h-l

+ h* -h-l

t*

"'¿ùiffl-crp=i~i
ft* + i-l\ ft* + h\_ft* + i-2\ft* + h-l\

= v     t*     )\t* + i)     V  t*-l   )\t* + i-l)'

From that we get the second inequality.

Remark 2.7. Other bounds are (by Remarks 2.4.1 and 2.4.2)

'¡«o^C^ro-c:.1))**©-^
Example. For / = (xx, ... , x„_i) n (xx, ... , xn)2 we have I(R) - n - 1,

t* - I, r* — 0. Hence, the first bound in Theorem 2.6 equals the bound in

Remark 2.7 and equals (1)(n - I) + ("y1) = (?)((zz - 1) + (i + l)(n - i)/n).
Using [EK] we get

/JKS//)=Q(Z2-1)+^J)  =  ^((ZZ-1) + (ZZ-Z)(ZZ-Z-1)/((Z+1)ZZ)).

This shows that in this example the bounds given in Theorem 2.6 are not far of

being sharp.

In order to get bounds for the Betti numbers in terms of e, n and k where k

is defined in (1.10) one can combine Theorem 2.6 with the following bounds on

I(R) given by the first author in [H], where one can also find better bounds for

ßx (S/I). Note that there is already no upper bound for the number of generators

of / which does not involve k . Following [EVR], §4, we set v(e, h) — ( {"') -

r + r<0 where t and r are defined in (14).

Lemma 2.8. Let I be an ideal of S such that mk is an R-standard ideal (k >

0). Then

(i)   I(R)<(n- l-n' + v(kd-xe,n'))(n+kk_-x), where

ri = min(zz- 1, kd~xe- 11

(ii)   I(R) < ((In - 3)/(n - I) + ekd~x(n - 2)2/(n - l))(f_7').

(iii) // depth(R) > 0, then I(R) < (d - l)(kde - 1).
(iv) // / is a Buchsbaum ideal, then I(R) < h - h' + v(e, h!), where tí -

min(h , e - I).
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3. Applications

As applications of our results we will give upper bounds for the Betti numbers

of the homogeneous ideal of some projective schemes.

Example 3.1. Let V be an arithmetically Buchsbaum projective subscheme of

codimension 2 in P". Then by [H], Corollary 4.1, I(R) < (I + Se)1'2 and
t* < (-1 + (I + %e)xl2)/2. Hence by Theorem 2.6 we get

^^(C;í)-g>.))"+-»"2+("+<"1)C-:D'
Thus:

(1) ßi(S/Iv) < ((nf)-3)(l + %e)xl2 + (3 + (l + %e)xl2)/2 = (»+X)(i + Se)x¡2 +

3/2-5(l + 8e)'/2/2.
(2) ß2(S/Iv) < (C+i)-i)(i + 8*)1/2 + (l + (l + 8í>)1/2)/2 = (»+x)(l + Se)x/2 +

l/2-((l + 8<?)>/2)/2.

(3) For all zz > z > 3, ßi(S/Iv) < (£»)(1 + 8e)1/2.

Example 3.2. Let V be an arithmetically Buchsbaum projective subscheme of
codimension h in P" . Then, we have the following bounds on the Betti num-

bers:

*w«s(Cïir')-C:.,))«'-i*-'>'+C)-6:i)-
In particular, if d = 2 (i.e., for curves)

w//r)*o-i>+f; •).-(,:,).
Example 3.3. Let C be a non-degenerate, reduced and irreducible curve in P"

over an algebraically closed field K. From Theorem 2.6 and Remark 2.7 we get

^//c)£(:)w+(" - ■>-(,;,)•

Using Lemma 2.8 (iii) we obtain

«./«sQ^-tH ("71>- G;,)-
By [GLP], one can choose k < max(l ,e — h); hence if e > n + I we have

which only depends on e .
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