Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Infinite differentiability in polynomially bounded o-minimal structures


Author: Chris Miller
Journal: Proc. Amer. Math. Soc. 123 (1995), 2551-2555
MSC: Primary 03C65; Secondary 03C50, 26E10
DOI: https://doi.org/10.1090/S0002-9939-1995-1257118-1
MathSciNet review: 1257118
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Infinitely differentiable functions definable in a polynomially bounded o-minimal expansion $ \Re $ of the ordered field of real numbers are shown to have some of the nice properties of real analytic functions. In particular, if a definable function $ f:{\mathbb{R}^n} \to \mathbb{R}$ is $ {C^N}$ at $ a \in {\mathbb{R}^n}$ for all $ N \in \mathbb{N}$ and all partial derivatives of f vanish at a, then f vanishes identically on some open neighborhood of a. Combining this with the Abhyankar-Moh theorem on convergence of power series, it is shown that if $ \Re $ is a polynomially bounded o-minimal expansion of the field of real numbers with restricted analytic functions, then all $ {C^\infty }$ functions definable in $ \Re $ are real analytic, provided that this is true for all definable functions of one variable.


References [Enhancements On Off] (What's this?)

  • [AM] S. Abhyankar and T. Moh, Reduction theorem for divergent power series, J. Reine Angew. Math. 241 (1970), 27-33. MR 0259158 (41:3800)
  • [BM] E. Bierstone and P. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5-42. MR 972342 (89k:32011)
  • [BCR] J. Bochnak, M. Coste, and M.-F. Roy, Géométrie algébrique réelle, Springer-Verlag, Berlin and Heidelberg, 1987. MR 949442 (90b:14030)
  • [DD] J. Denef and L. van den Dries, p-adic and real subanalytic sets, Ann. of Math. (2) 128 (1988), 79-138. MR 951508 (89k:03034)
  • [D] L. van den Dries, A generalization of the Tarski-Seidenberg theorem and some nondefinability results, Bull. Amer. Math. Soc. (N.S.) 15 (1986), 189-193. MR 854552 (88b:03048)
  • [M1] C. Miller, Exponentiation is hard to avoid, Proc. Amer. Math. Soc. 122 (1994), 257-259. MR 1195484 (94k:03042)
  • [M2] -, Expansions of the real field with power functions, Ann. Pure Appl. Logic 68 (1994), 79-94. MR 1278550 (95i:03081)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03C65, 03C50, 26E10

Retrieve articles in all journals with MSC: 03C65, 03C50, 26E10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1257118-1
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society