Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Indecomposable coalgebras, simple comodules, and pointed Hopf algebras


Author: Susan Montgomery
Journal: Proc. Amer. Math. Soc. 123 (1995), 2343-2351
MSC: Primary 16W30
DOI: https://doi.org/10.1090/S0002-9939-1995-1257119-3
MathSciNet review: 1257119
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that every coalgebra C is a direct sum of coalgebras in such a way that the summands correspond to the connected components of the Ext quiver of the simple comodules of C. This result is used to prove that every pointed Hopf algebra is a crossed product of a group over the indecomposable component of the identity element.


References [Enhancements On Off] (What's this?)

  • [A] E. Abe, Hopf algebras, Cambridge Univ. Press, Cambridge, 1980. MR 594432 (83a:16010)
  • [CM] W. Chin and I. Musson, Hopf algebra duality, injective modules, and quantum groups, Comm. Algebra 22 (1994), 4661-4692. MR 1285700 (95d:16049)
  • [DK] C. De Concini and V. G. Kac, Representations of quantum groups at roots of 1, Progr. Math., vol. 92, Birkhäuser, Boston, 1990. MR 1103601 (92g:17012)
  • [Di] J. Dieudonné, Introduction to the theory of formal groups, Marcel Dekker, New York, 1973. MR 0332802 (48:11128)
  • [Dr] V. G. Drinfeld, Quantum groups, Proc. Internat. Congr. Math., Berkeley, Vol. 1, 1986, pp. 789-820.
  • [GW] K. R. Goodearl and R. Warfield, An introduction to Noetherian rings, London Math. Soc. Stud. Texts, vol. 16, Cambridge Univ. Press, Cambridge, 1989. MR 1020298 (91c:16001)
  • [K] I. Kaplansky, Bialgebras, Lecture Notes in Math., University of Chicago, 1975. MR 0435126 (55:8087)
  • [La] R. G. Larson, Characters of Hopf algebras, J. Algebra 17 (1971), 352-368. MR 0283054 (44:287)
  • [L] G. Lusztig, Modular representations and quantum groups, Contemp. Math., vol. 82, Amer. Math. Soc., Providence, RI, 1989, pp. 59-77. MR 982278 (90a:16008)
  • [M1] S. Montgomery, Some remarks on filtrations of Hopf algebras, Comm. Algebra 21 (1993), 999-1007. MR 1204762 (94g:16046)
  • [M2] -, Hopf algebras and their actions on rings, CBMS Lecture Notes, vol. 82, Amer. Math. Soc., Providence, RI, 1993. MR 1243637 (94i:16019)
  • [MS] S. Montgomery and S. P. Smith, Skew derivations and $ {U_q}({\text{sl}}(2))$, Israel J. Math. 72 (1990), 158-166. MR 1098987 (92e:16027)
  • [P] R. S. Pierce, Associative algebras, Graduate Texts in Math., vol. 88, Springer-Verlag, New York, 1982. MR 674652 (84c:16001)
  • [R] D. E. Radford, Irreducible representations of $ {U_q}(g)$ rising from $ Mod_{{C^{1/2}}}^ \bullet $, Quantum Deformations of Algebras and Their Representations, Israel Math. Conf. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 1993.
  • [SI] M. E. Sweedler, Hopf algebras, Benjamin, New York, 1969. MR 0252485 (40:5705)
  • [S2] -, Integrals for Hopf algebras, Ann. of Math. (2) 89 (1969), 323-335. MR 0242840 (39:4167)
  • [ShM] T. Shudo and H. Miyamoto, On the decomposition of coalgebras, Hiroshima J. Math. 8 (1978), 499-504. MR 508357 (80a:16018)
  • [Tf] E. J. Taft, The order of the antipode of a finite-dimensional Hopf algebra, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 2631-2633. MR 0286868 (44:4075)
  • [Tk] M. Takeuchi, Some topics on $ G{L_q}(n)$, J. Algebra 147 (1992), 379-410. MR 1161300 (93b:17055)
  • [XF] Y. H. Xu and Y. Fong, On the decomposition of coalgebras, Words, Languages, and Combinatorics (Kyoto 1990), World Scientific Publishing, River Edge, NJ, 1992, pp. 504-522. MR 1161046 (93h:16070)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16W30

Retrieve articles in all journals with MSC: 16W30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1257119-3
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society