Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Completeness of metrizable pre-images of van Douwen-complete spaces


Author: Kōichi Tsuda
Journal: Proc. Amer. Math. Soc. 123 (1995), 2601-2606
MSC: Primary 54E50; Secondary 54C10, 54E40, 54F45
DOI: https://doi.org/10.1090/S0002-9939-1995-1260184-0
MathSciNet review: 1260184
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We shall show the recurrence of complete metrizability of irreducible closed pre-images of van Douwen-complete spaces. As its corollary we shall show that every van Douwen-complete space is $ {G_\delta }$ in any Lašnev space.


References [Enhancements On Off] (What's this?)

  • [1] C. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16. MR 0188982 (32:6409)
  • [2] R. Engelking, Dimension theory, North-Holland, Amsterdam, 1978. MR 0482697 (58:2753b)
  • [3] -, General topology, Heldermann Verlag, Berlin, 1989. MR 1039321 (91c:54001)
  • [4] D. M. Hyman, A note on closed maps and metrizability, Proc. Amer. Math. Soc. 21 (1969), 109-112. MR 0238258 (38:6534)
  • [5] N. Lašnev, Continuous decompositions and closed mappings of metric spaces, Soviet Math. Dokl. 6 (1965), 1504-1506.
  • [6] E. Michael, A note on closed maps and compact sets, Israel J. Math. 2 (1964), 173-176. MR 0177396 (31:1659)
  • [7] S. Oka, Every Lašnev space is the perfect image of a zero-dimesional one, Bull. Acad. Polon. Sci. Math. 28 (1980), 591-594. MR 628647 (82h:54062)
  • [8] A. Okuyama, Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyôiku Daigaku Sect. A 9 (1967), 236-254. MR 0230283 (37:5846)
  • [9] S. A. Stricklen, Jr., An embedding theorem for Lašnev spaces, Gen. Topology Appl. 6 (1976), 145-152. MR 0400151 (53:3986)
  • [10] K. Tsuda, Non-existence of universal spaces for some stratifiable spaces, Topology Proc. 9 (1984), 165-171. MR 781559 (86d:54036)
  • [11] -, A universal space for strongly 0-dimensional closed images of complete metrizable spaces, unpublished manuscript.
  • [12] -, Universal spaces for 0-dimensional van Douwen-complete spaces, preprint.
  • [13] K. R. Van Doren, Closed, continuous images of complete metric spaces, Fund. Math. 80 (1970), 47-50. MR 0358674 (50:11133)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54E50, 54C10, 54E40, 54F45

Retrieve articles in all journals with MSC: 54E50, 54C10, 54E40, 54F45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1260184-0
Keywords: Complete metric space, closed map, irreducible map, Čech-completeness, universal space
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society