Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the number of Galois $ p$-extensions of a local field


Author: Masakazu Yamagishi
Journal: Proc. Amer. Math. Soc. 123 (1995), 2373-2380
MSC: Primary 11S20; Secondary 11S15
DOI: https://doi.org/10.1090/S0002-9939-1995-1264832-0
MathSciNet review: 1264832
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let p be a prime, k a finite extension of the p-adic field $ {\mathbb{Q}_p}$, and G a finite p-group. Let $ v(k,G)$ denote the number of non-isomorphic Galois extensions of k whose Galois groups are isomorphic to G. When k does not contain a primitive p-th root of unity, I. R. Šafarevič gave an explicit formula for $ v(k,G)$. In this note, we treat the case when k contains a primitive p-th root of unity. After giving a general formula for $ v(k,G)$ (Theorem 1), we calculate $ v(k,G)$ explicitly for some special p-groups (Theorem 2.2).


References [Enhancements On Off] (What's this?)

  • [Cu-Re] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras. Interscience, New York and London, 1962. MR 0144979 (26:2519)
  • [Fe] W. Feit, On p-regular extensions of local fields, Proc. Amer. Math. Soc. 10 (1959), 592-595. MR 0106896 (21:5626)
  • [Fu] G. Fujisaki, A remark on quaternion extensions of the rational p-adic field, Proc. Japan Acad. Ser. A Math. Sci. 66 (1990), 257-259. MR 1077609 (91m:11104)
  • [Ha] P. Hall, The Eulerian functions of a group, Quart. J. Math. Oxford Ser. (2) 7 (1936), 134-151.
  • [Hu] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin and Heidelberg, 1967. MR 0224703 (37:302)
  • [Ih] Y. Ihara, Note of the lecture at Algebra Colloquium, University of Tokyo, June, 1983.
  • [Iw] K. Iwasawa, On Galois groups of local fields, Trans. Amer. Math. Soc. 80 (1955), 448-469. MR 0075239 (17:714g)
  • [Je-Yu] C. Jensen and N. Yui, Quaternion extensions, Algebraic Geometry and Commutative Algebra, Kinokuniya, Tokyo, 1988, pp. 155-182. MR 977759 (90a:12007)
  • [Jo] G. A. Jones, Enumeration of homomorphisms and surface-coverings, Preprint, University of Southampton, 1993. MR 1366619 (96m:20059)
  • [Kr] M. Krasner, Nombres des extensions d'un degré donné d'un corps $ \mathfrak{p}$-adique, Les Tendances Géom. en Algèbre et Théorie des Nombres, Édition du Centre National de la Recherche Scientifique, Paris, 1966, pp. 143-169. MR 0225756 (37:1349)
  • [La] J. Labute, Classification of Demushkin groups, Canad. J. Math. 19 (1967), 106-132. MR 0210788 (35:1674)
  • [Ma-Ng] R. Massy and T. Nguyen-Quang-Do, Plongement d'une extension de degré $ {p^2}$ dans une surextension non abélienne de degré $ {p^3}$: étude locale-globale, J. Reine Angew. Math. 291 (1977), 149-161. MR 0439808 (55:12690)
  • [Na] H. Naito, Dihedral extensions of degree 8 over the rational p-adic fields, Proc. Japan Acad. Ser. A. Math. Sci. 71 (1995). MR 1326788 (96a:11133)
  • [Ša] I. R. Šafarevič, On p-extensions, Mat. Sb. 20(62) (1947), 351-363; English transl., Amer. Math. Soc. Transl. Ser. 2 4 (1956), 59-72; see also Collected Mathematical Papers 6-19. MR 0020546 (8:560e)
  • [Se] J.-P. Serre, Topics in Galois theory, Jones and Bartlett, Boston and London, 1992. MR 1162313 (94d:12006)
  • [Wi] E. Witt, Konstruktion von galoisschen Körpern der Charakteristik p zu vorgegebener Gruppe der Ordnung $ {p^f}$, J. Reine Angew. Math. 174 (1936), 237-245.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11S20, 11S15

Retrieve articles in all journals with MSC: 11S20, 11S15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1264832-0
Keywords: Local field, Demuškin group, p-extension
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society