ON SOLUTIONS OF ELLIPTIC EQUATIONS THAT DECAY RAPIDLY ON PATHS

D. H. ARMITAGE

(Communicated by Barbara Lee Keyfitz)

Abstract. Let $P(D)$ be an elliptic differential operator on \mathbb{R}^n with constant coefficients. It is known that if u is a solution of $P(D)u = 0$ on an unbounded domain and if u decays uniformly and sufficiently rapidly, then $u = 0$. In this note it is shown that the same conclusion holds if u decays rapidly, but not a priori uniformly, on a sufficiently large set of unbounded paths.

Throughout this note Ω is an unbounded domain in \mathbb{R}^n, where $n \geq 2$, and $P(D) = \sum_{|\alpha| \leq d} a_{\alpha}D^\alpha$ is an elliptic linear differential operator on \mathbb{R}^n with constant complex coefficients. In response to a problem proposed for the harmonic case ($P(D) = \Delta$, the Laplacian operator) at a Durham Conference in 1983 [3, Problem 3.27], Armitage, Bagby and Gauthier [1] gave two proofs of the following result.

Theorem A. There exists a continuous function $\varepsilon: [0, +\infty) \to (0, 1]$ with the following property. If u is a solution of $P(D)u = 0$ on Ω such that $|u(x)| \leq \varepsilon(||x||)$ for all $x \in \Omega$, then $u = 0$.

Some theorems for special domains Ω in the harmonic and holomorphic ($n = 2$ and $P(D) = \partial$) cases suggest that it may be possible to replace the condition $|u(x)| \leq \varepsilon(||x||)$ by a requirement that u should decay rapidly, but not a priori uniformly, on a suitable set of unbounded paths; see, for example, Armitage and Goldstein [2]. Here we confirm that there is indeed a general result of this type.

We now fix some further notation. Let M be an $(n - 1)$-dimensional manifold, and let $\Gamma: M \times [0, +\infty) \to \Omega$ be a continuous function such that (i) $\Gamma(\omega \times (0, +\infty))$ is open for each open subset ω of M, and (ii) for each $\xi \in M$ the set $\gamma_\xi = \{\Gamma(\xi, t): t \geq 0\}$ is closed and unbounded.

Theorem 1. There exists a continuous function $\eta: [0, +\infty) \to (0, 1]$ with the following property. If u is a solution of $P(D)u = 0$ on Ω such that

\begin{equation}
(1) \quad u(x) = O(\eta(||x||)) \quad (||x|| \to +\infty, x \in \gamma_\xi)
\end{equation}

for a second category set of ξ in M, then $u \equiv 0$.

Received by the editors November 22, 1993.
1991 Mathematics Subject Classification. Primary 35J30.

©1995 American Mathematical Society

2421
The category condition is indispensible, at least in the holomorphic case: if \(S \) is a first category subset of the unit circle and \(\eta: [0, +\infty) \rightarrow (0, 1] \) is continuous, then there exists a non-constant entire function \(f \) such that \(f(rz) = o(\eta(r)) \) as \(r \rightarrow +\infty \) for each \(z \in S \) (see Schneider [4, Example 10]).

In proving Theorem 1, we indicate first how \(\eta \) is chosen. Let \(\{B_1, B_2, \ldots \} \) be a countable base for the topology of \(M \). For the moment let \(k \) be a fixed positive integer. By hypothesis, \(\Gamma(B_k \times (0, +\infty)) \) is open. Moreover, this set has an unbounded connected component, since it contains an unbounded connected set of the form \(\Gamma(\{\xi\} \times (0, +\infty)) \). Let \(\Omega_k \) be an unbounded, connected, open subset of \(\Gamma(B_k \times (0, +\infty)) \) such that \(\overline{\Omega_k} \subset \Omega \). By Theorem A, there exists a continuous function \(\varepsilon_k: [0, +\infty) \rightarrow (0, 1] \) with the property that the zero function is the only solution of \(P(D)u = 0 \) on \(\Gamma_k \) satisfying \(|u(x)| \leq \varepsilon_k(\|x\|) \) for all \(x \in \Omega_k \). We take \(\eta: [0, +\infty) \rightarrow (0, 1] \) to be a continuous function such that \(\eta \leq \varepsilon_k \) on \((k, +\infty) \) for each \(k \).

Now suppose that \(u \) is a solution of \(P(D)u = 0 \) on \(\Omega \) satisfying (1) for all \(\xi \) belonging to a second category subset \(E \) of \(M \), and define a function \(\Phi \) on \(M \) by

\[
\Phi(\xi) = \sup\{|u(x)|/\eta(\|x\|): x \in \gamma_\xi\}.
\]

We claim that \(\Phi \) is lower semi-continuous on \(M \). To prove this, suppose that \(\xi \in M \) and that \(A < \Phi(\xi) \). Then there exists \(x \in \gamma_\xi \), say \(x = \Gamma(\xi, t) \), such that \(|u(x)|/\eta(\|x\|) > A \). By the continuity of \(u \), \(\eta \) and \(\Gamma \), there exists \(\delta > 0 \) such that \(|u(y)|/\eta(\|y\|) > A \) whenever \(\|x - y\| < \delta \), and there exists an open neighbourhood \(N \) of \(\xi \) such that \(\|x - \Gamma(\xi, t)\| < \delta \) for all \(\xi \in N \). Hence

\[
\Phi(\xi) \geq |u(\Gamma(\xi, t))/\eta(\|\Gamma(\xi, t)\|) > A \quad (\xi \in N),
\]

so \(\Phi \) is lower semi-continuous at \(\xi \). Now define \(A_m = \{\xi \in M: \Phi(\xi) \leq m\} \) \((m = 1, 2, \ldots)\). By the lower semi-continuity of \(\Phi \), each \(A_m \) is closed. Clearly \(\Phi(\xi) < +\infty \) for each \(\xi \in E \), so that \(E \subseteq \bigcup_{m=1}^{\infty} A_m \). Since \(E \) is second category, some \(A_k \) has non-empty interior; this interior contains some \(B_q \). If \(x \in \Omega_q \), then \(x \in \gamma_\xi \) for some \(\xi \in B_q \subseteq A_k \), so that \(|u(x)|/\eta(\|x\|) \leq \Phi(\xi) \leq k \). Hence

\[
|u(x)| \leq k\eta(\|x\|) \leq k\varepsilon_q(\|x\|) \quad (x \in \Omega_q, \|x\| > q).
\]

Since, further, \(u \) is bounded on the compact set \(\{x \in \Omega_q: \|x\| \leq q\} \), there exists a positive constant \(C \) such that \(C|u(x)| \leq \varepsilon_q(\|x\|) \) for all \(x \in \Omega_q \). From our choice of \(\varepsilon_q \), it follows that \(u = 0 \) on \(\Omega_q \). Since \(u \) is real-analytic on \(\Omega \), we conclude that \(u = 0 \) on \(\Omega \).

REFERENCES

DEPARTMENT OF PURE MATHEMATICS, QUEEN'S UNIVERSITY, BELFAST BT7 1NN, NORTHERN IRELAND

\textit{E-mail address: d.armitage@qub.ac.uk v2}