Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

LCM-stability of power series extensions characterizes Dedekind domains


Author: John T. Condo
Journal: Proc. Amer. Math. Soc. 123 (1995), 2333-2341
MSC: Primary 13F05; Secondary 13F25
DOI: https://doi.org/10.1090/S0002-9939-1995-1277104-5
MathSciNet review: 1277104
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove the following main result. A (commutative integral) domain R is a Dedekind domain if and only if $ R[[X]] \subset T[[X]]$ is LCM-stable for each domain T containing R as a subring.


References [Enhancements On Off] (What's this?)

  • [1] M. Anderson and J. Watkins, Coherence of power series rings, J. Algebra 107 (1987), 187-194. MR 883881 (88c:13025)
  • [2] J. T. Arnold, Krull dimension in power series rings, Trans. Amer. Math. Soc. 177 (1973), 299-304. MR 0316451 (47:4998)
  • [3] -, Power series rings over Prüfer domains, Pacific J. Math. 44 (1973), 1-11. MR 0316450 (47:4997)
  • [4] J. T. Arnold and J. Brewer, When $ {(D[[X]])_{P[[X]]}}$ is a valuation ring, Proc. Amer. Math. Soc. 37 (1973), 326-332. MR 0311656 (47:218)
  • [5] N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, MA, 1972.
  • [6] D. E. Dobbs, On locally divided integral domains and CPI-overrings, Internat. J. Math. Math. Sci. 4 (1981), 119-135. MR 606662 (83j:13002)
  • [7] -, On n-flat modules over a commutative ring, Bull. Austral. Math. Soc. 43 (1991), 491-498. MR 1107404 (93a:13005)
  • [8] -, On the criteria of D. D. Anderson for invertible and flat ideals, Canad. Math. Bull. 29 (1986), 25-32. MR 824877 (87e:13001)
  • [9] R. Gilmer, Finite element factorization in group rings, Lecture Notes in Pure and Appl. Math., vol. 7, Dekker, New York, 1974. MR 0345958 (49:10686)
  • [10] -, Multiplicative ideal theory, Dekker, New York, 1972. MR 0427289 (55:323)
  • [11] I. Kaplansky, Commutative rings, 2nd ed., Univ. of Chicago Press, Chicago and London, 1974. MR 0345945 (49:10674)
  • [12] F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794-799. MR 0181653 (31:5880)
  • [13] J. Sato and K. Yoshida, The LCM-stability on polynomial extensions, Math. Rep. Toyama Univ. 10 (1987), 75-84. MR 918300 (89a:13005)
  • [14] P. Sheldon, How changing $ D[[X]]$ changes its quotient field, Trans. Amer. Math. Soc. 159 (1971), 223-244. MR 0279092 (43:4818)
  • [15] H. Uda, LCM-stableness in ring extensions, Hiroshima Math. J. 13 (1983), 357-377. MR 707189 (85b:13008)
  • [16] -, $ {G_2}$-stableness and LCM-stableness, Hiroshima Math. J. 18 (1988), 47-52. MR 935880 (89e:13021)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13F05, 13F25

Retrieve articles in all journals with MSC: 13F05, 13F25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1277104-5
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society