Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Ultrametrics and geometric measures

Authors: H. Movahedi-Lankarani and R. Wells
Journal: Proc. Amer. Math. Soc. 123 (1995), 2579-2584
MSC: Primary 54E40; Secondary 28A75, 54E35
MathSciNet review: 1307552
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let Z be a locally connected, locally compact, and separable metric space equipped with a geometric measure v. It is shown that if a subset Y of Z is bi-Lipschitz isomorphic to an ultrametric space, then $ \nu (Y) = 0$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54E40, 28A75, 54E35

Retrieve articles in all journals with MSC: 54E40, 28A75, 54E35

Additional Information

PII: S 0002-9939(1995)1307552-6
Keywords: Lipschitz, ultrametric, geometric measure, Lebesgue measure, logarithmic ratio, Hausdorff dimension, metric dimension
Article copyright: © Copyright 1995 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia