Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Ultrametrics and geometric measures


Authors: H. Movahedi-Lankarani and R. Wells
Journal: Proc. Amer. Math. Soc. 123 (1995), 2579-2584
MSC: Primary 54E40; Secondary 28A75, 54E35
MathSciNet review: 1307552
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let Z be a locally connected, locally compact, and separable metric space equipped with a geometric measure v. It is shown that if a subset Y of Z is bi-Lipschitz isomorphic to an ultrametric space, then $ \nu (Y) = 0$.


References [Enhancements On Off] (What's this?)

  • [1] Michael Aschbacher, Pierre Baldi, Eric B. Baum, and Richard M. Wilson, Embeddings of ultrametric spaces in finite-dimensional structures, SIAM J. Algebraic Discrete Methods 8 (1987), no. 4, 564–577. MR 918059, 10.1137/0608046
  • [2] Patrice Assouad, Étude d’une dimension métrique liée à la possibilité de plongements dans 𝑅ⁿ, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 15, A731–A734 (French, with English summary). MR 532401
  • [3] Alf Jonsson and Hans Wallin, Function spaces on subsets of 𝑅ⁿ, Math. Rep. 2 (1984), no. 1, xiv+221. MR 820626
  • [4] John B. Kelly, Metric inequalities and symmetric differences, Inequalities, II (Proc. Second Sympos., U.S. Air Force Acad., Colo., 1967), Academic Press, New York, 1970, pp. 193–212. MR 0264600
  • [5] A. Yu. Lemin, Isometric imbedding of isosceles (non-Archimedean) spaces into Euclidean ones, Dokl. Akad. Nauk SSSR 285 (1985), no. 3, 558–562 (Russian). MR 821340
  • [6] K. Luosto, private communication.
  • [7] Jouni Luukkainen and Hossein Movahedi-Lankarani, Minimal bi-Lipschitz embedding dimension of ultrametric spaces, Fund. Math. 144 (1994), no. 2, 181–193. MR 1273695
  • [8] Hossein Movahedi-Lankarani, An invariant of bi-Lipschitz maps, Fund. Math. 143 (1993), no. 1, 1–9. MR 1234987
  • [9] S. Semmes, private communication.
  • [10] A. F. Timan, The isometric mapping of certain ultrametric spaces into the 𝐿_{𝑝} spaces, Trudy Mat. Inst. Steklov. 134 (1975), 314–326, 411 (Russian). Theory of functions and its applications (Collection of articles dedicated to Sergeĭ Mihaĭlovič Nikol′skiĭ on the ocassion of his seventieth birthday). MR 0390618
  • [11] A. F. Timan and I. A. Vestfrid, Any separable ultrametric space is isometrically embeddable in 𝑙₂, Funktsional. Anal. i Prilozhen. 17 (1983), no. 1, 85–86 (Russian). MR 695109

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54E40, 28A75, 54E35

Retrieve articles in all journals with MSC: 54E40, 28A75, 54E35


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1995-1307552-6
Keywords: Lipschitz, ultrametric, geometric measure, Lebesgue measure, logarithmic ratio, Hausdorff dimension, metric dimension
Article copyright: © Copyright 1995 American Mathematical Society