Editorial Information

To be published in the Proceedings, a paper must be correct, new, nontrivial, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Proceedings Editors solicit and encourage publication of worthy papers of length not exceeding 10 published pages. Published pages are the same size as those generated in the style files provided for \LaTeX or \amstex.

Very short notes not to exceed two printed pages are also accepted, and appear under the heading Shorter Notes. Items deemed suitable include an elegant new proof of an important and well-known theorem, an illuminating example or counterexample, or a new viewpoint on familiar results. New results, if of a brief and striking character, might also be acceptable, though in general a paper which is merely very short will not be suitable for the Shorter Notes department.

As of April 30, 1995, the backlog for this journal was approximately 9 issues. This estimate is the result of dividing the number of manuscripts for this journal in the Providence office that have not yet gone to the printer on the above date by the average number of articles per issue over the previous twelve months, reduced by the number of issues published in four months (the time necessary for editing and composing a typical issue).

A Copyright Transfer Agreement is required before a paper will be published in this journal. By submitting a paper to this journal, authors certify that the manuscript has not been submitted to nor is it under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors and Editors

The first page of an article must consist of a descriptive title, followed by an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as "some remarks about" or "concerning" should be avoided. The abstract should be at least one complete sentence, and at most 150 words. Included with the footnotes to the paper, there should be the 1991 Mathematics Subject Classification representing the primary and secondary subjects of the article. This may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. A list of the numbers may be found in the annual index of Mathematical Reviews, published with the December issue starting in 1990, as well as from the electronic service e-MATH [telnet e-MATH.ams.org (or telnet 130.44.1.100). Login and password are e-math]. For journal abbreviations used in bibliographies, see the list of serials in the latest Mathematical Reviews annual index. When the manuscript is submitted, authors should supply the editor with electronic addresses if available. These will be printed after the postal address at the end of each article.

Two copies of the paper should be sent directly to the appropriate Editor and the author should keep one copy.

\TeX files available upon request. Authors may request a copy of the \TeX files of their papers by sending e-mail to file-request@math.ams.org or by contacting the Editorial Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. The request should include the title of the paper, the name(s) of the author(s), the name of the publication in which the paper has or will appear, and the volume and issue numbers if known. The \TeX file will be sent to the author making the request after the article goes to the printer. If the requestor can receive Internet e-mail, please include the e-mail address to which the file should be sent. Otherwise please indicate a diskette format and postal address to which a disk should be mailed. Note: Because
\TeX production at the AMS sometimes requires extra fonts and macros that are not yet publicly available, \TeX files cannot be guaranteed to run through the author’s version of \TeX without errors. The AMS regrets that it cannot provide support to eliminate such errors in the author’s \TeX environment.

Electronically prepared manuscripts. The AMS encourages submission of electronically prepared manuscripts in \amstex or \amslatex because properly prepared electronic manuscripts save the author proofreading time and move more quickly through the production process. To this end, the Society has prepared author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, the *AMS Author Handbook*, samples, and a style file that generates the particular design specifications of that publication series for both \amstex and \amslatex.

Those authors who make use of these style files from the beginning of the writing process will further reduce their own efforts. Electronically submitted manuscripts prepared in plain \TeX or \LaTeX are normally not acceptable due to the high amount of technical time required to insure that the file will run properly through the AMS in-house production system. Users of plain \TeX should have little difficulty learning \amstex, and \LaTeX users will find that \amstex is the same as \LaTeX with additional commands to simplify the typesetting of mathematics.

Authors with FTP access may retrieve an author package from the Society’s Internet node e-MATH.ams.org (130.44.1.100). For those without FTP access, the author package can be obtained free of charge by sending e-mail to pub@math.ams.org (Internet) or from the Publication Division, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. When requesting an author package, please specify \amstex or \amslatex and the publication in which your paper will appear.

At the time of submission, authors should indicate if the paper has been prepared using \amstex or \amslatex and provide the Editor with a paper manuscript that matches the electronic manuscript. The final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also send the final version of the paper manuscript to the Editor, who will forward a copy to the Providence office. Editors will require authors to send their electronically prepared manuscripts to the Providence office in a timely fashion. Electronically prepared manuscripts can be sent via e-mail to pub-submit@math.ams.org (Internet) or on diskette to the Editorial Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. When submitting an electronic manuscript, please be sure to include a message indicating in which publication the paper has been accepted. No corrections will be accepted electronically. Authors must mark their changes on their proof copies and return them to the Providence office. Complete instructions on how to submit files are included in the author package.

Any inquiries concerning a paper that has been accepted for publication should be sent directly to the Editorial Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248.
Editors

Authors are requested to send papers directly to the appropriate Editor (the one whose area of responsibility and expertise, as described below, most closely approximates the subject field of the manuscript). Only when in doubt about an appropriate Editor, should manuscripts be sent to the Coordinating Editor responsible for the area in mathematics most closely connected to the paper. If in doubt about the area, send manuscript to the Managing Editor, to whom all other communication about the journal should also be addressed. (All addresses should include the line “Department of Mathematics”, unless another department is indicated.)

Managing Editor: Irwin Kra, SUNY at Stony Brook, Stony Brook, NY 11794-3651
e-mail: irwin@math.sunysb.edu

1. ODE, PDE, GLOBAL ANALYSIS, AND DYNAMICAL SYSTEMS
 Coordinating Editor: Linda Keen, CUNY-Lehman College, Bronx, NY 10468,
e-mail: ljkcl@cunyvm.cuny.edu or ljkcl@cunyvm.bitnet

 Partial differential equations, Jeffrey B. Rauch, University of Michigan, Angell Hall, Ann Arbor,
 MI 48109, e-mail: rauch@math.lsa.umich.edu

 Dynamical systems and ergodic theory, Mary Rees, Department of Pure Mathematics,
 University of Liverpool, P.O. Box 147, Liverpool L69 3BX, United Kingdom,
e-mail: maryrees@liv Territories.ac.uk

 Ordinary differential equations and special functions, Hal L. Smith, Arizona State University,
 Tempe, AZ 85287, e-mail: halsmith@math.la.asu.edu

 Global analysis, Linda Keen

2. LIE GROUPS, TOPOLOGY, AND GEOMETRY
 Coordinating Editor: Peter Li, University of California, Irvine, CA 92717,
e-mail: pli@math.uci.edu

 Topological groups and Lie groups (symmetric spaces), Roe Goodman, Rutgers University,
 New Brunswick, NJ 08903-2101, e-mail: goodman@math.rutgers.edu

 Riemannian geometry (including affine, pseudo-Riemannian, contact, classical, and Lorentzian ge-
 metries), Christopher Croke, University of Pennsylvania, Philadelphia, PA 19104-6317,
e-mail: ccroke@math.upenn.edu

 Geometric analysis (geometric PDE, minimal surfaces, harmonic maps) and Kahler geometry, Peter
 Li

 Algebraic topology (higher dimensional topology), Thomas Goodwillie, Brown University, Box
 1917, Providence, RI 02912, e-mail: tom@gauss.math.brown.edu

 Metric and geometric topology, James West, Cornell University, White Hall, Ithaca, NY 14853-
 7901, e-mail: west@math.cornell.edu

 Set-theoretic and general topology, Franklin D. Tall, University of Toronto, Toronto, Ontario,
 Canada M5S 1A1, e-mail: tall@math.toronto.edu

 Low dimensional topology and differential topology (knot theory, 3- and 4-manifolds, Gauge-
 theory), Ronald Stern, University of California, Irvine, CA 92717,
e-mail: rstern@math.uci.edu

3. ANALYSIS AND OPERATOR THEORY
 Coordinating Editor: Clifford J. Earle, Jr., Cornell University, White Hall, Ithaca, NY 14853-
 7901, e-mail: cliff@math.cornell.edu

 One complex variable and potential theory, Albert Baernstein II, Washington University, St. Louis,
 MO 63130-4899, e-mail: C31801AB@WUVMD.BITNET

 Several complex variables, Eric Bedford, Department of Mathematics, Indiana University, Bloom-
 ington, IN 47405, e-mail: BEDFORD@uics.indiana.edu

 Functional analysis, Dale Alspach, Oklahoma State University, Stillwater, OK 74078-0613,
e-mail: alspach@hilbert.math.okstate.edu

 Complex variables, functional analysis, and operator theory, Theodore W. Gamelin, University of
 California, Los Angeles, CA 90024, e-mail: twg@math.ucla.edu

 Functional analysis and operator theory, Palle E. T. Jorgensen, University of Iowa, Iowa City, IA
 52242

 Classical and harmonic analysis, J. Marshall Ash, DePaul University, Chicago, IL 60614,
e-mail: MATJMA@DEPAUL.BITNET
4. ALGEBRA, NUMBER THEORY, AND COMBINATORICS

General number theory, William W. Adams, University of Maryland, College Park, MD 20742-4015, e-mail: wwa@math.umd.edu

Commutative algebra, Wolmer V. Vasconcelos, Rutgers University, New Brunswick, NJ 08903-2101, e-mail: vasconce@rings.rutgers.edu

Group theory, Ronald M. Solomon, Ohio State University, Columbus, OH 43210-1101, e-mail: solomon@function.mps.ohio-state.edu

K-theory, algebraic groups, algebraic geometry, Eric M. Friedlander, Northwestern University, Evanston, IL 60208-2730, e-mail: eric@math.nwu.edu

Lie algebras and Lie groups, Roe Goodman, Rutgers University, New Brunswick, NJ 08903-2101, e-mail: goodman@math.rutgers.edu

Noncommutative rings, Ken Goodearl, University of California, Santa Barbara, CA 93106, e-mail: goodearl@math.ucsb.edu

5. APPLIED MATHEMATICS, PROBABILITY, AND STATISTICS

Probability, Richard T. Durrett, Cornell University, White Hall, Ithaca, NY 14853-7901, e-mail: rtd1@cornell.edu

Statistics, Wei Y. Loh, Department of Statistics, University of Wisconsin, Madison, WI 53706-1693, e-mail: loh@stat.wisc.edu

Applied mathematics, David Sharp, Theoretic Division, Los Alamos National Laboratory MSB285, Los Alamos, NM 87545, e-mail: dhs@lanl.gov

Control theory, John A. Burns, Interdisciplinary Center for Applied Mathematics, Virginia Polytechnic Institute, Blacksburg, VA 24061-0531, e-mail: burnsreg@vtvml.cc.vt.edu
D. GEOMETRY

Toby N. Bailey and A. Rod Gover, Exceptional invariants in the parabolic invariant theory of conformal geometry .. 2535
Manuel Barros and Oscar J. Garay, On submanifolds with harmonic mean curvature 2545

E. LOGIC AND FOUNDATIONS

Chris Miller, Infinite differentiability in polynomially bounded o-minimal structures . . . 2551

F. STATISTICS AND PROBABILITY

A. K. Gupta and S. Ofori-Nyarko, On disguised inverted Wishart distribution 2557

G. TOPOLOGY

Harold Levine, Computing the Euler characteristic of a manifold with boundary 2563
C. Costantini, Every Wijsman topology relative to a Polish space is Polish 2569
Stephen Watson, A compact Hausdorff space without P-points in which $G_δ$-sets have interior 2575
H. Movahedi-Lankarani and R. Wells, Ultrametrics and geometric measures 2579
Koji Fujiwara, Eigenvalues of Laplacians on a closed Riemannian manifold and its nets . 2585
Colette Anne, A note on the generalized Dumbbell problem 2595
Kôichi Tsuda, Completeness of metrizable pre-images of van Douwen-complete spaces . 2601
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
CONTENTS
Vol. 123, No. 8 Whole No. 434 August 1995

A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS

Leonid Brailovsky, Dmitrii V. Pasechnik, and Cheryl E. Praeger, Subsets close to invariant
subsets for group actions .. 2283
Jianbei An and Marston Conder, On the numbers of 2-weights, unipotent conjugacy classes,
and irreducible Brauer 2-characters of finite classical groups 2297
Sebastian Walcher, On monocomposition algebras 2305
Daniel Britten, Frank Lemire, and Vahid Taroikh, A constraint on the existence of simple
torsion-free Lie modules .. 2315
M. Gonzalez and J. Otal, Embedding theorems for residually Černikov CC-groups 2323
John T. Condo, LCM-stability of power series extensions characterizes Dedekind domains 2333
Susan Montgomery, Indecomposable coalgebras, simple comodules, and pointed Hopf algebras 2343
Carter G. Lyons and Gary L. Peterson, Semidirect products of I–E groups 2353
Yu Chen, On representations of elementary subgroups of Chevalley groups over algebras . 2357
Michael R. Anderson, The noncommutativity of Hecke algebras associated to Weyl groups 2363
I-Chiau Huang, A residue map and its applications to some one-dimensional rings 2369
Masakazu Yamagishi, On the number of Galois p-extensions of a local field 2373
Ulrich Albrecht and Juutta Hausen, Non-singular modules and R-homogeneous maps 2381
Yufei Xiao, Rings with flat socles .. 2391
Le Tuan Hoa and Rosa M. Miro-Roig, Bounds for the Betti numbers of generalized Cohen-Macaulay ideals .. 2397

B. ANALYSIS

Ching-Yun Suen, The minimum norm of certain completely positive maps 2407
D. Preiss and M. Tartaglia, On characterizing derivatives 2417
D. H. Armitage, On solutions of elliptic equations that decay rapidly on paths 2421
A. I. Aptekarev, V. Kaliaguine, and W. Van Assche, Criterion for the resolvent set of non-symmetric tridiagonal operators .. 2423
Raül Curto and Martin Mathieu, Spectrally bounded generalized inner derivations 2431
Muneo Chō and Masuo Itoh, Putnam’s inequality for p-hyponormal operators 2435
Alf Jonsson, Measures satisfying a refined doubling condition and absolute continuity 2441
Stanislaw Migorski, A counterexample to a compact embedding theorem for functions with values in a Hilbert space .. 2447
Chaohui Zhang, Non-extendibility of the Bers isomorphism 2451
T. Kilpeläinen and P. Lindqvist, The Lavrentiev phenomenon and the obstacle problem for the Dirichlet integral .. 2459
James H. Liu, Uniform asymptotic stability via Liapunov-Razumikhin technique 2465
Hajrudin Fejzic, Convex functions and Schwarz derivatives 2473
H. T. Koelink, Identities for q-ultraspherical polynomials and Jacobi functions 2479
M. V. Velasco and A. R. Villena, A random Banach-Steinhaus theorem 2489
A. G. Ramm, Finding discontinuities from tomographic data 2499
Jean-Pierre Grenier, Fonctions totalement croissantes: Une correction 2507
L. Elsner and S. Friedland, Variation of the discrete eigenvalues of normal operators 2511
Kazuaki Taira, Boundary value problems for elliptic pseudo-differential operators 2519

C. APPLIED MATHEMATICS

Tomek Bartoszynski and Marion Scheepers, Filters and games 2529

(Continued on inside back cover)