Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On abstract Fubini theorems for finitely additive integration


Authors: E. de Amo and M. Díaz Carrillo
Journal: Proc. Amer. Math. Soc. 123 (1995), 2739-2744
MSC: Primary 28A35; Secondary 28C05
DOI: https://doi.org/10.1090/S0002-9939-1995-1257101-6
MathSciNet review: 1257101
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A Fubini theorem for positive linear functionals on the vector lattice of the real-valued functions is given. This result properly contains that of the Riemann-$ \mu $-abstract integral.


References [Enhancements On Off] (What's this?)

  • [1] G. Aumann, Integralerweiterungen mittels Normen, Arch. Math. (Basel) 3 (1952), 441-450. MR 0054693 (14:963b)
  • [2] P. Bobillo Guerrero and M. Díaz Carrillo, Summable and integrable functions with respect to any Loomis system, Arch. Math. (Basel) 49 (1987), 245-256. MR 906739 (88i:28021)
  • [3] M. Díaz Carrillo and P. Muñoz Rivas, Finitely additive integration: integral extension with local-convergence, Ann. Sci. Math. Québec 17 (1993), 1-9. MR 1259371 (94m:28019)
  • [4] N. Dunford and J. T. Schwartz, Linear operators. I, Interscience, New York, 1957.
  • [5] J. Elsner, Zum "Satz von Fubini" für ein abstraktes Riemann-integral, Math. Z. 141 (1975), 265-278. MR 0360987 (50:13434)
  • [6] K. Floret, Maß-und Integrationstheorie, Teubner, Stuttgart, 1981. MR 609518 (82m:28001)
  • [7] G. G. Gould, The Daniell-Bourbaki integral for finitely additive measures, Proc. London Math. Soc. 16 (1966), 297-320. MR 0204606 (34:4445)
  • [8] H. Günzler, Linear functionals which are integrals, Rend. Sem. Mat. Fis. Milano XVIII (1977), 167-176. MR 0354987 (50:7464)
  • [9] -, Integration, Bibliogr. Institut, Mannheim, 1985. MR 802205 (86k:28002)
  • [10] -, Convergence theorems for a Daniell-Loomis integral, Math. Pannonica 2/2 (1991), 77-94. MR 1149951 (93d:28019)
  • [11] D. Hoffmann, Zum "Satz von Fubini", J. Reine Angew. Math. 298 (1977), 138-145. MR 0437707 (55:10631)
  • [12] L. H. Loomis, Linear functionals and content, Amer. J. Math. 76 (1954), 168-182. MR 0060145 (15:631d)
  • [13] W. F. Pfeffer, Integrals and measures, Dekker, New York, 1977. MR 0460580 (57:573)
  • [14] F. W. Schäfke, Lokale Integralnormen and verallgemeinerte uneigentlich Riemann-Stiltjes-Integrals, J. Reine Angew. Math. 289 (1977), 118-134. MR 0453968 (56:12220)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A35, 28C05

Retrieve articles in all journals with MSC: 28A35, 28C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1257101-6
Keywords: Fubini theorem, finitely additive measure, abstract Riemann integral
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society