Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


$ \lambda$-power integrals on the Cantor type sets

Author: Shushang Fu
Journal: Proc. Amer. Math. Soc. 123 (1995), 2731-2737
MSC: Primary 26A24; Secondary 26A39
MathSciNet review: 1257105
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce the notions of $ \lambda $-power dyadic derivatives and $ \lambda $-power dyadic integrals, so that, in particular, the Cantor ternery function is an indefinite integral of its derivative. Furthermore, under certain conditions on the integrands we can give a Riemann-type definition to the $ \lambda $-power dyadic integral.

References [Enhancements On Off] (What's this?)

  • [1] Russell A. Gordon, The inversion of approximate and dyadic derivatives using an extension of the Henstock integral, Real Anal. Exchange 16 (1990/91), no. 1, 154–168. MR 1087481 (92b:26015)
  • [2] J. Kahane, Une theorie de Denjoy des martingales dyadiques, Prepublication from Unite Associee CNRS757, Universite de Paris-Sud.
  • [3] Peng Yee Lee, Lanzhou lectures on Henstock integration, Series in Real Analysis, vol. 2, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989. MR 1050957 (92j:26010)
  • [4] A. Pacquenaent, Determination d'une fonction a moyen de sa derivee sur un resean binaire, C. R. Acad. Sci. Paris Ser. A 284 (1977), 365-368.
  • [5] Brian S. Thomson, Derivates of interval functions, Mem. Amer. Math. Soc. 93 (1991), no. 452, vi+96. MR 1078198 (92d:26002),

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A24, 26A39

Retrieve articles in all journals with MSC: 26A24, 26A39

Additional Information

PII: S 0002-9939(1995)1257105-3
Keywords: Singular function, Cantor type set, Hausdorff dimension and Hausdorff measure, $ \lambda $-power dyadic derivative, $ \lambda $-power dyadic integral, $ \lambda $-power Riemann integral
Article copyright: © Copyright 1995 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia