TWO-DIMENSIONAL REPRESENTATIONS
OF UNIFORM ALGEBRAS

TAKAHIKO NAKAZI AND KATSUTOSHI TAKAHASHI

(Communicated by Palle E. T. Jorgensen)

Abstract. It is shown that every two-dimensional representation of a uniform algebra has a dilation, which extends the result by Paulsen. We also prove some dilation result for a representation of the disk algebra.

1. Introduction

Let $C(X)$ be the algebra of complex-valued continuous functions on a compact Hausdorff space X, and let A be a uniform algebra on X. Let $L(H)$ denote the algebra of all bounded linear operators on a separable Hilbert space H. An algebra homomorphism $\Phi : A \rightarrow L(H)$ is called a representation of A on H if $\Phi(1) = I_H$ and Φ is contractive, i.e., $\|\Phi(f)\| \leq \|f\|$ for all $f \in A$. Two representations $\Phi_1 : A \rightarrow L(H_1)$ and $\Phi_2 : A \rightarrow L(H_2)$ are said to be unitarily equivalent if there exists a unitary operator $U : H_1 \rightarrow H_2$ such that $U\Phi_1(f) = \Phi_2(f)U$ for all $f \in A$. For a representation Φ of A on H, a representation $\tilde{\Phi} : C(X) \rightarrow L(K)$ is called a dilation of Φ if $H \subseteq K$ and $\tilde{\Phi}(f) = P_H\Phi(f)|_H$ for all $f \in A$, where P_H is the orthogonal projection of K onto H. Paulsen [6] showed that every two-dimensional representation of A has a dilation in the case where A is the algebra of all functions uniformly approximated on a compact subset X of the complex plane by rational functions with poles off X (see also [5]). In this note we give another proof of the above dilation result (for a general uniform algebra A).

B. Cole (see [1]) showed that for any closed ideal J in a uniform algebra A, the quotient algebra A/J is isometrically isomorphic to an algebra of bounded operators on a Hilbert space H, or equivalently, there is a representation $\Phi : A \rightarrow L(H)$ such that $\|\Phi(f)\| = \|f + J\|$ for all $f \in A$, where $\|f + J\|$ is the quotient norm of the coset $f + J$ of f in A/J. We say a representation Φ of A is Q-isometric if $\|\Phi(f)\| = \|f + \ker\Phi\|$ for all $f \in A$, and a Q-isometric representation $\Phi : A \rightarrow L(K)$ is a Q-isometric dilation of a representation $\Phi : A \rightarrow L(H)$ if $H \subseteq K$ and $\Phi(f) = P_H\Phi(f)|_H$ for all $f \in A$. A
Q-isometric representation of A is used by Cole, Lewis and Wermer [2] to generalize Pick's conditions of the interpolation problem for the disk algebra to the case of the uniform algebra A. The result of Cole stated above shows that any representation Φ of A has a Q-isometric dilation. Indeed, by Cole's result, there exists a Q-isometric representation Ψ such that $\ker\Psi = \ker\Phi$. Then the representation Φ defined by $\Phi(f) = \Phi(f) \oplus \Psi(f)$, $f \in A$, is a Q-isometric dilation of Φ. It also follows from our proof of the dilation result (Theorem 1) that if a representation $\Phi: A \to L(H)$ satisfies $\dim(A/\ker\Phi) = 2$, then Φ has a Q-isometric dilation $\Phi: A \to L(K)$ which is minimal in the sense that $K = \bigvee_{f \in A} \Phi(f)H$. In Section 3 it is shown that every representation of the disk algebra has a minimal Q-isometric dilation.

2. TWO-DIMENSIONAL REPRESENTATIONS

In this section we prove the following theorem, which extends the result by Paulsen [6].

Theorem 1. Let $\Phi: A \to L(H)$ be a representation of A. If $\dim(A/\ker\Phi) = 2$, then Φ has a dilation.

Using Misra's method [5], we first determine representations $\Phi: A \to L(H)$ such that $\dim(A/\ker\Phi) = 2$.

Let J be an ideal of A with $\dim(A/J) = 2$. Then

(1) $J = \{ f \in A : f(x) = f(y) = 0 \}$,

where x and y are two points in the maximal ideal space $M(A)$ of A, or

(2) $J = \{ f \in A : f(x) = \delta(f) = 0 \}$,

where $x \in M(A)$ and δ is a bounded point derivation at x, that is, δ is a bounded linear functional on A such that $\delta(fg) = f(x)\delta(g) + g(x)\delta(f)$ for $f, g \in A$ (see, e.g., [3]).

Lemma 1. Let $\Phi: A \to L(H)$ be a homomorphism with $\Phi(1) = I_H$ and assume that $\dim(A/\ker\Phi) = 2$. Then, according as $J = \ker\Phi$ is of the form (1) or (2), $\Phi(f)$ is expressed as

(3) $\Phi(f) = \begin{pmatrix} f(x)I_{H_1} & (f(x) - f(y))C \\ 0 & f(y)I_{H_2} \end{pmatrix}$ on $H = H_1 \oplus H_2$

or

(3') $\Phi(f) = \begin{pmatrix} f(x)I_{H_1} & \delta(f)C \\ 0 & f(x)I_{H_2} \end{pmatrix}$ on $H = H_1 \oplus H_2$

for all $f \in A$, where C is a bounded linear operator from H_2 to H_1.

Proof. Suppose that J is of the form (1). Take functions f_1 and f_2 in A such that $f_1(x) = f_2(y) = 1$ and $f_1(y) = f_2(x) = 0$. Then $\Phi(f_1)$ is idempotent and so

$\Phi(f_1) = \begin{pmatrix} I & C \\ 0 & 0 \end{pmatrix}$ on $H = \text{ran} \Phi(f_1) \oplus (\text{ran} \Phi(f_1))^\perp$.

Since $\Phi(f_1) + \Phi(f_2) = I$ and $f - f(x)f_1 - f(y)f_2 \in J$ for $f \in A$, we have

$\Phi(f) = \begin{pmatrix} f(x)I & (f(x) - f(y))C \\ 0 & f(y)I \end{pmatrix}$ on $H = \text{ran} \Phi(f_1) \oplus (\text{ran} \Phi(f_1))^\perp$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
for all \(f \in A \). For the case where \(J \) is of the form (2), take \(f_0 \in A \) such that \(f_0(x) = 0 \) and \(\delta(f_0) = 1 \), and note that \(\Phi(f_0)^2 = 0 \) and \(f - f(x) - \delta(f)f_0 \in J \) for \(f \in A \).

Lemma 2 (cf. [5, the proof of Theorem 2.3]). Let \(C : H_2 \to H_1 \) and \(D : K_2 \to K_1 \) be two operators, where \(H_1, H_2, K_1 \) and \(K_2 \) are Hilbert spaces. If \(\|C\| \leq \|D\| \), then

\[
\left\| \begin{pmatrix} aI_{H_1} & C \\ 0 & bI_{H_2} \end{pmatrix} \right\| \leq \left\| \begin{pmatrix} aI_{K_1} & D \\ 0 & bI_{K_2} \end{pmatrix} \right\|
\]

for any scalars \(a \) and \(b \).

Proof. If \(a = 0 \) or \(D = 0 \), the inequality is clear. So suppose that \(a \) and \(D \) are nonzero. By considering \((1 + \varepsilon)D \) (\(\varepsilon > 0 \)) instead of \(D \), we can also assume that \(\|C\| < \|D\| \). Take any unit vector \(\left(\begin{array}{c} x' \\ y' \end{array} \right) \) in \(H = H_1 \oplus H_2 \) (\(y' \neq 0 \)). Since \(\|C\| < \|D\| \), there is \(y' \in K_2 \) such that \(\|Cy\| < \|Dy'\| \) and \(\|y'\| = \|y\| \). Set \(x' = \frac{d}{\|y'\|} \left(\begin{array}{c} y \\ y' \end{array} \right) \). Then \(\|\left(\begin{array}{c} x' \\ y' \end{array} \right)\| = 1 \), and we have

\[
\left\| \begin{pmatrix} aI_{H_1} & C \\ 0 & bI_{H_2} \end{pmatrix} \left(\begin{array}{c} x' \\ y' \end{array} \right) \right\| < \left\| \begin{pmatrix} aI_{K_1} & D \\ 0 & bI_{K_2} \end{pmatrix} \left(\begin{array}{c} x' \\ y' \end{array} \right) \right\|
\]

which implies the required inequality.

Let \(\mu \) be a probability measure on \(X \), and let \(H^2(\mu) \) and \([J]_{\mu}\) denote the closure in \(L^2(\mu) \) of \(A \) and of an ideal \(J \), respectively. For each \(f \in A \), we define an operator \(S^\mu_f \) on \(H = H^2(\mu) \oplus [J]_{\mu} \) by \(S^\mu_f h = P_H(fh) \) for each \(h \in H \). Then the map \(\Phi^\mu : f \mapsto S^\mu_f \) is a representation of \(A \) on \(H \) such that \(\ker \Phi^\mu \supset J \) and has a dilation \(\tilde{\Phi}^\mu : f \mapsto M^\mu_f \), where for \(f \in C(X) \), \(M^\mu_f \) denotes the multiplication operator by \(f \) on \(L^2(\mu) \). B. Cole (see [1]) showed that for each \(f \in A \), there exists a probability measure \(\nu \) such that \(\|S^\nu_f\| = \|f + J\| \).

For \(x, y \in M(A) \) and a bounded point derivation \(\delta \) at \(x \), let

\[\sigma(x, y) = \sup\{|f(y)| : f(x) = 0 \text{ and } \|f\| \leq 1\}\]

and

\[\rho(x, \delta) = \sup\{|\delta(f)| : f(x) = 0 \text{ and } \|f\| \leq 1\}.
\]

Lemma 3 (cf. [5, Theorem 1.1 and Corollary 1.1]). Let \(\Phi : A \to L(H) \) be a homomorphism with \(\Phi(1) = 1 \) such that \(\dim(A/\ker \Phi) = 2 \), and let \(C \) be as in Lemma 1. Then \(\Phi \) is a representation of \(A \) on \(H \) if and only if, according as \(J = \ker \Phi \) is of the form (1) or (2),

\[
\|C\| \leq \left(\frac{1}{\sigma(x, y)^2 - 1} \right)^{1/2} \text{ or } \rho(x, \delta)^{-1}.
\]

Furthermore, the equality in (4) holds if and only if \(\|\Phi(f)\| = \|f + J\| \) for all \(f \in A \).

Proof. By [5, Remark 2], the condition that \(\Phi \) is contractive is equivalent to the condition that \(\|\Phi(f)\| \leq \|f\| \) for all \(f \in J_x = \{f : f(x) = 0\} \). Since \(\dim(J_x/J) = 1 \) by assumption, the latter is equivalent to the condition that \(\|\Phi(f)\| \leq \|f + J\| \) for some \(f \in J_x \setminus J \). In the case where \(J \) is of the form (1), for \(f \in J_x \setminus J \), by (3) we have

\[
\Phi(f)^*\Phi(f) = \begin{pmatrix} 0 & 0 \\ 0 & |f(y)|^2(C^*C + I) \end{pmatrix},
\]
hence
\[\|\Phi(f)\| = \|\sigma(x, y)f + J\| \]
for \(f \in J \). Hence the first part follows. Also, if \(\|\Phi(f)\| = \|f + J\| \)
for \(f \in J \), then it follows that \(\Phi \) is contractive and the equality in (4) holds. Conversely, assume that the equality in (4) holds. By Cole's result, for each \(f \in A \), there is a probability measure \(\nu \) such that \(\|f + J\| = \|S_f^\nu\| \). Since the map \(\Phi'': g \mapsto S_g^\nu \) is a representation of \(A \) such that \(\ker \Phi'' \supset J \), it follows from the first part and Lemma 2 that \(\|S_f^\nu\| \leq \|\Phi(f)\| \). (Note that if \(\dim(A/\ker \Phi'') = 1 \), then \(S_f^\nu \) is the operator of multiplication by \(f(x) \) or \(f(y) \) on the one-dimensional space and so \(\|S_f^\nu\| \leq \|\Phi(f)\| \).) Therefore \(\|f + J\| = \|\Phi(f)\| \) for all \(f \in A \).

Corollary 1. Let \(J \) be an ideal of \(A \) such that \(\dim(A/J) = 2 \). Then there is a probability measure \(\mu \) such that \(\|S_f^\mu\| = \|f + J\| \) for all \(f \in A \).

Proof. The ideal \(J \) is of the form (1) or (2). Take an \(f \in A \) such that \(f(x) = 0 \). By Cole’s result, there exists a probability measure \(\mu \) such that \(\|f + J\| = \|S_f^\mu\| \). The map \(\Phi''': g \mapsto S_g^\mu \) is a representation of \(A \) such that \(\ker \Phi''' \supset J \). If \(\ker \Phi'''' = J \), then it follows from Lemma 3 (and its proof) that \(\mu \) is the required measure. On the other hand, if \(\ker \Phi'''' \neq J \), then, since \(S_f^\mu \neq 0 \), the ideal \(J \) is of the form (1) and \(S_f^\mu = f(y) \). It follows that \(\|f + J\| = \|f(y)\| \)
\((\neq 0) \), hence \(\sigma(x, y) = 1 \), which means \(x \) and \(y \) belong to the different Gleason parts of \(M(A) \). In this case, by Lemma 3 any representation \(\Phi \) of \(A \) such that \(\ker \Phi = J \) satisfies \(\|\Phi(g)\| = \|g + J\| \) for all \(g \in A \). Therefore we have only to take a probability measure \(\mu \) such that \(\dim(H^2(\mu) \oplus [J]_\mu) = 2 \), for example, \(\mu = (\nu_1 + \nu_2)/2 \), where \(\nu_1 \) and \(\nu_2 \) are representing measures of \(x \) and \(y \), respectively.

Proof of Theorem 1. Suppose that \(J = \ker \Phi \) is of the form (1). By Lemma 3, \(\Phi(f) \) (\(f \in A \)) is expressed as (3) with \(\|\sigma\| \leq \alpha = (\sigma(x, y)^{-2} - 1)^{1/2} \). If \(\alpha = 0 \), then \(C = 0 \) and clearly \(\Phi \) has a dilation, which is unitarily equivalent to the representation
\[
\begin{pmatrix}
\sum_{1 \leq n \leq d_1} \oplus M_{f_{11}}^\mu & \oplus \\
\sum_{1 \leq n \leq d_2} \oplus M_{f_{22}}^\mu & \oplus
\end{pmatrix}
\]
of \(C(X) \) on the space \((\sum_{1 \leq n \leq d_1} \oplus L^2(\mu_1)) \oplus (\sum_{1 \leq n \leq d_2} \oplus L^2(\mu_2)) \), where \(\mu_1 \) and \(\mu_2 \) are representing measures of \(x \) and \(y \), respectively, and \(d_i = \dim H_i \) for \(i = 1, 2 \). So assume \(\alpha \neq 0 \). Then we can define an operator
\[
W = \begin{pmatrix}
(I_{H_1} - \alpha^{-2}CC^*)^{1/2} & 0 \\
\alpha^{-1}C^* & 0 \\
0 & I_{H_2}
\end{pmatrix}
: H_1 \oplus H_2 \to H_1 \oplus H_2 \oplus H_2.
\]
Also, define a representation \(\Psi \) of \(A \) on \(K = H_1 \oplus H_2 \oplus H_2 \) by
\[
\Psi(f) = \begin{pmatrix}
f(x)I_{H_1} & 0 & 0 \\
0 & f(x)I_{H_1} & \alpha(f(x) - f(y))I_{H_2} \\
0 & 0 & f(y)I_{H_2}
\end{pmatrix}.
\]
Then the operator W is isometric and satisfies $\Psi(f)^* W = W \Phi(f)^*$ for $f \in A$. Therefore $\text{ran} \, W$ is invariant for the algebra $\{\Psi(f)^*: f \in A\}$ and the representation Φ is unitarily equivalent to a representation Ψ_0 of A on $\text{ran} \, W$ defined by $\Psi_0(f) = P_{\text{ran} \, W} \Psi(f)|_{\text{ran} \, W}$. By Corollary 1 and Lemma 3, there exists a probability measure μ such that for $f \in A$, the operator S_f^μ on $H^2(\mu) \oplus [J]_\mu$ is expressed as

$$S_f^\mu = \begin{pmatrix} f(x) & \alpha(f(x) - f(y)) \\ 0 & f(y) \end{pmatrix}$$

(with respect to some orthonormal basis). Also, if ν is a representing measure of x, then S_f^ν is the multiplication operator by $f(x)$ on the one-dimensional space. Thus Ψ has a dilation, which is unitarily equivalent to the representation

$$f \mapsto \left(\sum_{1 \leq n \leq d_1} \oplus M_f^\nu \right) \oplus \left(\sum_{1 \leq n \leq d_2} \oplus M_f^\mu \right)$$

of $C(X)$ on $(\sum_{1 \leq i \leq d_1} L^2(\nu)) \oplus (\sum_{1 \leq i \leq d_2} L^2(\mu))$. Hence it follows that Φ has a dilation.

The above argument is also applied to the case where J is of the form (2), if the definition of $\Psi(f)$ is replaced by

$$T(f) = \begin{pmatrix} f(x) |H_1 \rangle \langle 0 | & 0 \\ 0 & f(x) |H_2 \rangle \langle 0 | \end{pmatrix}$$

where $\alpha = \rho(x, \delta)^{-1}$ (> 0). Thus the proof is complete.

Corollary 2. If Φ is a representation of A with $\dim(A/\ker \Phi) = 2$, then Φ has a minimal Q-isometric dilation.

Proof. Let Ψ, Ψ_0 and W be as in the proof of Theorem 1. Then the invariant subspace $K_1 = \bigvee_{f \in A} \Psi(f) \text{ran} \, W$ of the algebra $\{\Psi(f): f \in A\}$ generated by $\text{ran} \, W$ includes the space $\{0\} \oplus H_2 \oplus H_2$, hence the representation of $A: f \mapsto \Psi(f)|_{K_1}$ is a minimal Q-isometric dilation of Ψ_0. Since Φ is unitarily equivalent to Ψ_0, it follows that Φ has a minimal Q-isometric dilation. (Note that if $\alpha = 0$, then Φ is Q-isometric by Lemma 3.)

3. Representations of the disk algebra

We consider a minimal Q-isometric dilation of a representation of the disk algebra. In the following, A denotes the disk algebra, i.e., A is the algebra of all continuous functions on the unit circle T whose Fourier coefficients vanish on the negative integers. Let H^p (1 $\leq p \leq \infty$) denote the Hardy space on T, thus H^p is the closure of A in $L^p = L^p(m)$ or the weak*-closure of A in $L^\infty = L^\infty(m)$ according as $p < \infty$ or $p = \infty$, where m is the Lebesgue measure of T.

We use results from the dilation theory of Sz.-Nagy and Foias [8]. Let T be a contraction (i.e., $\|T\| \leq 1$) on a Hilbert space H. Then, as is well known, T can be decomposed as $T = U \oplus T_1$ on $H = H_u \oplus H_1$ where U is a unitary operator on H_u and T_1 is a completely nonunitary contraction on H_1, that is, T_1 has no nonzero invariant subspace M such that $T_1|_M$ is unitary (see [8, Chap. I, Theorem 3.2]). For a completely nonunitary contraction T on
H, the Sz.-Nagy and Foias functional calculus defines the weak *-continuous algebra homomorphism $\Phi_T : f \mapsto f(T)$ from H^∞ to $L(H)$, and T is said to be of class C_0 if Φ_T is not injective (see [8, Chap. III]). If T is of class C_0, then $T^n \to 0$ strongly (see [8, Chap. III, Proposition 4.2]), thus T is unitarily equivalent to the (functional model) operator
\[S(M) = P_{H^2(E) \ominus M} S|H^2(E) \ominus M , \]
where $H^2(E)$ is the E-valued Hardy space (E is a Hilbert space), S is the unilateral shift on $H^2(E)$ and M is an invariant subspace of S such that $\bigvee_{n \geq 0} S^n(H^2(E) \ominus M) = H^2(E)$ (see [8, Chap. VI]). Also, since $\ker \Phi_T (\neq \{0\})$ is a weak *-closed ideal in H^∞, we have $\ker \Phi_T = qH^\infty$ for an inner function q. The following lemma immediately follows from these facts.

Lemma 4. If T is a contraction on H of class C_0, then there is a contraction \tilde{T} on \tilde{H} (of H) of class C_0 satisfying the following conditions:

(i) $T^\ast = \tilde{T}^\ast | \tilde{H}$;
(ii) $\|f(\tilde{T})\| = \|f + \ker \Phi_T\|$ for all $f \in H^\infty$;
(iii) $\tilde{H} = \bigvee_{n \geq 0} \tilde{T}^n H$.

Proof. We may consider T as the functional model $S(M) = P_{H^2(E) \ominus M} S|H^2(E) \ominus M$. Let $\ker \Phi_T = qH^\infty$, where q is inner. Since $q(S(M)) = 0$, we have $M \supset qH^2(E)$. Define a contraction \tilde{T} on $\tilde{H} = H^2(E) \ominus qH^2(E)$ by $\tilde{T}^\ast = S^\ast | \tilde{H}$. Then clearly (i) holds and the condition $\bigvee_{n \geq 0} S^n(H^2(E) \ominus M) = H^2(E)$ implies (iii). Also, \tilde{T} is unitarily equivalent to the direct sum $\sum_{1 \leq n \leq d} \oplus S(q)$, where $d = \dim E$ and $S(q)$ is an operator on $H^2 \ominus qH^2$ defined by $S(q) h = P_{H^2 \ominus qH^2} (zh)$ ($h \in H^2 \ominus qH^2$). Therefore, for $f \in H^\infty$, we have
\[\|f(\tilde{T})\| = \left\| f \left(\sum_{1 \leq n \leq d} \oplus S(q) \right) \right\| = \|f(S(q))\| , \]
and so $\|f(\tilde{T})\| = \|f + qH^\infty\|$ (see [7]).

For a closed subset K of T (of measure zero), let $I(K)$ denote the ideal consisting of all functions of A which vanish on K. For each $f \in A$, $\|f + I(K)\| = \|f\|_K$, where $\|f\|_K = \sup \{|f(z)| : z \in K\}$ (see the proof of [4, p. 81, Theorem]). Also, for an inner function q, let $\text{supp } q$ denote the support of q, that is, $\text{supp } q$ is the set of all points on T for which there exists a sequence $\{z_n\}$ from the open unit disc such that $z_n \to z$ and $q(z_n) \to 0$. Thus, if a nonzero function f belongs to $qH^\infty \cap A$, then $f = 0$ on $\text{supp } q$, so it follows that $\text{supp } q$ is of measure zero (see [4, p. 52]) and qf is equal a.e. to a function in A. Also, the inner function q is analytic at each point on T which does not belong to $\text{supp } q$. Therefore we have $qH^\infty \cap I(K) = qI(\text{supp } q \cup K)$ for an inner function q and a closed subset K. It is known (see [4, p. 85, Theorem]) that J is a nonzero closed ideal of A if and only if $J = qI(K)$ where K is a closed subset of measure zero and q is an inner function such that $\text{supp } q \subset K$.

Lemma 5. Let J be a closed ideal of A and $J = qI(K)$, where K is a closed subset of measure zero and q is an inner function with $\text{supp } q \subset K$. Then, for
all \(f \in A \),

\[
\| f + J \| = \max \{ \| f + qH^\infty \|, \| f \|_K \}
\]

\[
= \max \{ \| f + qH^\infty \|, \| f \|_{K \setminus \text{supp } q} \}.
\]

Proof. Let \(f \in A \) and take a measure \(\mu \) on \(T \) annihilating \(J = qI(K) \) such that \(\| \mu \| = 1 \) and

\[
\| f + J \| = \int_T f \, d\mu.
\]

Since \(\mu \) annihilates \(J \), the proof of [4, p. 85, Theorem] shows that \(d\mu = \bar{q}h \, dm + d\nu \) where \(h \in zH^1 \) and \(\nu \) is a measure on \(T \) such that \(\text{supp } \nu \subset K \). Therefore we have

\[
\| f + J \| = \int_T f \, d\mu = \int_T f \bar{q}h \, dm + \int_T f \, d\nu
\]

\[
\leq \| f + qH^\infty \| \| h \|_1 + \| f \|_K \| \nu \|
\]

\[
\leq \max \{ \| f + qH^\infty \|, \| f \|_K \} (\| h \|_1 + \| \nu \|)
\]

\[
= \max \{ \| f + qH^\infty \|, \| f \|_K \}.
\]

The converse inequality is obvious, so the first equality is proved. For the proof of the second equality, it suffices to show \(\| f + qH^\infty \| \geq \| f \|_{\text{supp } q} \). Take any \(z \in \text{supp } q \). Then there is a sequence \(\{ z_n \} \) from the open unit disc such that \(z_n \to z \) and \(q(z_n) \to 0 \). Therefore, for all \(h \in H^\infty \), \(\| f + qh \| \geq | f(z_n) + q(z_n)h(z_n) | \to | f(z) | \), so that \(\| f + qh \| \geq \| f \|_{\text{supp } q} \). It follows that \(\| f + qH^\infty \| \geq \| f \|_{\text{supp } q} \).

Theorem 2. If \(\Phi \) is a representation of the disk algebra \(A \) on \(H \), then \(\Phi \) has a minimal \(Q \)-isometric dilation.

Proof. Let \(T = \Phi(z) \). First suppose that \(T \) is unitary. Then it follows from the spectral theory of unitary operators that \(\ker \Phi = I(\text{supp } T) \), where for a unitary operator \(U \), \(\text{supp } U \) denotes the support of the spectral measure of \(U \). (Note that \(\text{supp } T \) is of measure zero because \(\Phi \neq 0 \), and so \(T \) is singular.) We also have

\[
\| \Phi(f) \| = \| f(T) \| = \| f \|_{\text{supp } T} = \| f + I(\text{supp } T) \|
\]

for \(f \in A \), hence \(\Phi \) is \(Q \)-isometric.

Next suppose that \(T \) is not unitary. The contraction \(T \) is decomposed as \(T = U \oplus T_1 \) on \(H = H_u \oplus H_1 \), where \(U \) is unitary and \(T_1 \) is completely nonunitary. If \(T_1 \) is not of class \(C_0 \), then \(\ker \Phi = \{ 0 \} \). In this case we define \(\tilde{T} : A \to L(H_u \oplus K) \) by \(\tilde{T}(f) = f(U \oplus V) \), where \(V \) is the minimal isometric dilation on \(K \) of the contraction \(T_1 \). Since \(V \) has a unilateral shift summand, \(\tilde{T} \) is isometric. It is easy to show that \(\Phi \) is a minimal \(Q \)-isometric dilation of \(\Phi \). If \(T_1 \) is of class \(C_0 \), then \(\ker \Phi_{T_1} = qH^\infty \) where \(q \) is inner and

\[
\ker \Phi = I_{\text{supp } U} \cap qH^\infty = I(K),
\]

where \(K = \text{supp } U \cup \text{supp } q \), which is of measure zero. By Lemma 4, there exists a contraction \(\tilde{T}_1 \) on \(H_1 \) satisfying the conditions (i), (ii) and (iii) in Lemma 4. Define \(\tilde{\Phi} : A \to L(H_u \oplus \tilde{H}_1) \) by \(\tilde{\Phi}(f) = f(U \oplus \tilde{T}_1) \). Then it easily follows from the conditions (i) and (iii) that \(P_{H} \tilde{\Phi}(f)H = \Phi(f) \) for all \(f \in A \) and \(\forall f \in A \), \(\| \tilde{\Phi}(f) \| H = H_u \oplus \tilde{H}_1 \). For any \(f \in A \), \(\| \tilde{\Phi}(f) \| = \max \{ \| f \|_{\text{supp } U}, \| f \|_{\text{supp } \tilde{T}_1} \} \) and \(\| f(\tilde{T}_1) \| = \| f + qH^\infty \| \) by the condition (ii) of \(\tilde{T}_1 \), so it follows from
Lemma 5 that $||\tilde{\Phi}(f)|| = ||f + \ker \Phi||$. Thus $\tilde{\Phi}$ is a minimal Q-isometric dilation of Φ.

We are informed by the referee that the Ph.D. thesis of Che-Chen Chu, *Finite dimensional representation of a function algebra*, submitted to the University of Houston, 1992, contains the following stronger result of Theorem 1: If $\Phi: A \to L(H)$ is a homomorphism and $\dim H = 2$, then the cb-norm of Φ is equal to the norm of Φ. However our proof of Theorem 1, which directly constructs the dilation, is different from Chu’s proof.

REFERENCES

DEPARTMENT OF MATHEMATICS, HOKKAIDO UNIVERSITY, SAPPORO 060, JAPAN