Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Representing abstract measures by Loeb measures: a generalization of the standard part map


Author: J. M. Aldaz
Journal: Proc. Amer. Math. Soc. 123 (1995), 2799-2808
MSC: Primary 28E05; Secondary 03H05, 28A12
DOI: https://doi.org/10.1090/S0002-9939-1995-1260159-1
MathSciNet review: 1260159
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Loeb measures have been utilized to represent Radon and $ \tau $-smooth measures on topological spaces via the standard part map. The purpose of this paper is to show how to extend these results to a nontopological setting.


References [Enhancements On Off] (What's this?)

  • [A] R. M. Anderson, Star-finite representations of measure spaces, Trans. Amer. Math. Soc. 271 (1982), 667-687. MR 654856 (83m:03077)
  • [BW] A.R. Bernstein and F. Wattenberg, Nonstandard measure theory, Applications of Model Theory to Algebra, Analysis and Probability (W. A. J. Luxemburg, ed.), Holt, Rinehart and Winston, New York, 1969, pp. 171-185. MR 0247018 (40:287)
  • [He] C. W. Henson, On the nonstandard representation of measures, Trans. Amer. Math. Soc. 172 (1972), 437-446. MR 0315082 (47:3631)
  • [L1] P. A. Loeb, Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113-122. MR 0390154 (52:10980)
  • [L2] -, Applications of nonstandard analysis to ideal boundaries in potential theory, Israel J. Math. 25 (1976), 154-187. MR 0457757 (56:15961)
  • [L3] -, A nonstandard representation of measurable spaces, $ {L_\infty }$, and $ L_\infty ^ \ast $, Contributions to Nonstandard Analysis (W. A. J. Luxemburg and A. Robinson, eds.), North-Holland, Amsterdam, 1972, pp. 65-80.
  • [LR] D. Landers and L. Rogge, Universal Loeb-measurability of sets and of the standard part map with applications, Trans. Amer. Math. Soc. 304 1 (1987), 229-243. MR 906814 (89d:28015)
  • [Lux] W. A. J. Luxemburg, A general theory of monads, Applications of Model Theory to Algebra, Analysis and Probability (W. A. J. Luxemburg, ed.), Holt, Rinehart and Winston, New York, 1969, pp. 18-69. MR 0234829 (38:3143)
  • [R] D. Ross, Compact measures have Loeb preimages, Proc. Amer. Math. Soc. 115 (1992), 365-370. MR 1079898 (92i:28023)
  • [T] F. Topsøe, Topology and measure, Lecture Notes in Math., vol. 133, Springer-Verlag, Berlin, 1970. MR 0422560 (54:10546)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28E05, 03H05, 28A12

Retrieve articles in all journals with MSC: 28E05, 03H05, 28A12


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1260159-1
Keywords: Loeb measures, standard part map
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society