COMPLETE HYPERSURFACES
WITH CONSTANT MEAN CURVATURE
AND NON-NEGATIVE SECTIONAL CURVATURES

HU ZE-JUN

(Communicated by Christopher B. Croke)

Abstract. We classify the complete and non-negatively curved hypersurfaces of constant mean curvature in spaces of constant sectional curvature.

1. Introduction

Let \(M^{n+1}(c) \) be an \((n+1)\)-dimensional space of constant sectional curvature \(c \). When \(c < 0 \), \(M^{n+1}(c) = H^{n+1}(c) \); when \(c = 0 \), \(M^{n+1}(c) = R^{n+1} \); when \(c > 0 \), \(M^{n+1}(c) = S^{n+1}(c) \), respectively. Let \(M^n \) be an \(n \)-dimensional hypersurface with constant mean curvature \(H \) in \(M^{n+1}(c) \). Let \(S \) denote the square of the length of the second fundamental form. The main purpose of this paper is to give a characterization of non-negatively curved hypersurfaces of \(M^{n+1}(c) \) by the relationship between \(S \) and \(H \), this can be compared with the results obtained by Nomizu and Smyth [3], Okumura [4], Goldberg [1], Hasanis [2] and Smyth [6].

Theorem. Let \(M^n \) be a complete non-negatively curved hypersurface of \(M^{n+1}(c) \) with constant mean curvature \(H \). Then \(M^n \) is totally umbilical or

\[
\sup S = nc + \frac{n^3 H^2}{2k(n-k)} \pm \frac{n(n-2k)}{2k(n-k)} |H| \sqrt{n^2 H^2 + 4k(n-k)c},
\]

for some \(k = 1, 2, \ldots, n-1 \), when \(c \geq 0 \); or

\[
\sup S = nc + \frac{n^3 H^2}{2(n-1)} - \frac{n(n-2)}{2(n-1)} |H| \sqrt{n^2 H^2 + 4(n-1)c}, \quad \text{when} \; c < 0.
\]

In particular, if \(M^n \) is connected and \(S = \text{constant} \) (when \(c > 0 \), \(S = \text{constant} \) may be replaced by the condition that \(M^n \) is compact), then in the second case we have the following:

1. When \(c > 0 \), \(M^n = S^k(c_1) \times S^{n-k}(c_2) \), for some \(k = 1, 2, \ldots, n-1 \), where \(c_1 > 0 \), \(c_2 > 0 \) and \(1/c_1 + 1/c_2 = 1/c \).

Received by the editors October 21, 1992 and, in revised form, February 3, 1994.
1991 Mathematics Subject Classification. Primary 53C40; Secondary 53C20.
Key words and phrases. Hypersurfaces of constant mean curvature, sectional curvature, totally umbilical.

©1995 American Mathematical Society

2835
(2) When \(c = 0 \), \(M^n = R^k \times S^{n-k}(c_1) \) for some \(k = 1, 2, \ldots, n-1 \), where \(c_1 > 0 \).

(3) When \(c < 0 \), \(M^n = H^1(c_1) \times S^{n-1}(c_2) \), where \(c_1 < 0 \), \(c_2 > 0 \) and \\
\(1/c_1 + 1/c_2 = 1/c \).

From the theorem, we easily see the following

Corollary. Let \(M^n \) be a compact non-negatively curved hypersurface of \(M^{n+1}(c) \) \((c \leq 0) \) with constant mean curvature \(H \). Then \(M^n \) is totally umbilical and has positive sectional curvature \(H^2 + c \).

Remark. The main theorem was partially proved by Nomizu and Smyth in [3] whose results were extended to arbitrary codimension by Smyth [6] and later by Yau in [7] under the condition that \(M^n \) is compact.

2. Preliminaries

Let \(M^n \) be a hypersurface of \(M^{n+1}(c) \) and let \(e_1, \ldots, e_n, e_{n+1} \) be a local field of orthonormal frames in \(M^{n+1}(c) \), such that, restricted to \(M^n \), the vector field \(e_{n+1} \) is normal to \(M^n \). Then the second fundamental form \(B \) and the mean curvature \(H \) for \(M^n \) can be written as

\[
(2.1) \quad B = \sum_{i,j} h_{ij} \omega_i \omega_j e_{n+1}, \quad H = \frac{1}{n} \sum_i h_{ii}.
\]

The Gauss equation for \(M^n \) is

\[
(2.2) \quad R = n(n-1)c + n^2 H^2 - S,
\]

where \(S = \text{tr} \ B^2 = \sum_{i,j} h_{ij}^2 \) and \(R \) denotes the scalar curvature of \(M^n \).

We denote by \(\Delta \) the Laplacian relative to the induced metric on \(M^n \). If \(H = \text{constant} \), then ([3])

\[
(2.3) \quad (1/2) \Delta S = |\nabla B|^2 - S^2 + ncS - n^2 c H^2 + nH \text{tr} B^3.
\]

For any point \(p \) in \(M^n \), we can choose a local frame field \(e_1, e_2, \ldots, e_n \) so that the matrix \((h_{ij}) \) is diagonalized at that point, say, \(h_{ij} = \lambda_i \delta_{ij} \). Then (2.3) can be rewritten as ([3])

\[
(2.4) \quad (1/2) \Delta S = |\nabla B|^2 + \sum_{i<j} (\lambda_i - \lambda_j)^2 K_{ij},
\]

where \(K_{ij} = c + \lambda_i \lambda_j \) is the sectional curvature of the plane section spanned by \(e_i \) and \(e_j \).

Lemma (see Omori [5] and Yau [8]). Let \(M^n \) be an \(n \)-dimensional complete Riemannian manifold whose Ricci curvature is bounded from below. Let \(F \) be a \(C^2 \)-function bounded from above on \(M^n \). Then for any \(\varepsilon > 0 \), there exists a point \(p \) in \(M^n \) such that

\[
\sup F - \varepsilon < F(p), \quad |\nabla F|(p) < \varepsilon, \quad \Delta F(p) < \varepsilon.
\]

3. Standard models

This section is concerned with some standard models of complete non-negatively curved hypersurfaces with constant mean curvature of the space form
\(\overline{M}^{n+1}(c) \). In particular, we only consider non-totally umbilical cases, and the length of the second fundamental form of such hypersurfaces are calculated.

First, we consider a class of hypersurfaces \(R^k \times S^{n-k}(c) \) of \(R^{n+1} \), where \(k = 1, 2, \ldots, n - 1 \). The number of distinct principal curvatures of each hypersurface is exactly two, say 0 and \(\sqrt{c_1} \), with multiplicities \(k \) and \(n - k \), respectively. The sectional curvatures of a plane spanned by two principal directions are 0 and \(c_1 \), respectively. It is easily seen that \(H \) and \(S \) are constant, and they satisfy, for \(R^k \times S^{n-k}(c) \) in \(R^{n+1} \), \(S = n^2H^2/(n - k) \).

We next consider the case \(c > 0 \). Let

\[
S^k(c_1) = \{ (x_1, \ldots, x_{k+1}) \in R^{k+1}; \, x_1^2 + \cdots + x_{k+1}^2 = 1/c_1 \}, \\
S^{n-k}(c_2) = \{ (y_1, \ldots, y_{n-k+1}) \in R^{n-k+1}; \, y_1^2 + \cdots + y_{n-k+1}^2 = 1/c_2 \}, \\
S^{n+1}(c) = \{ (x_1, \ldots, x_{k+1}, y_1, \ldots, y_{n-k+1}) \in R^{n+2}; \, x_1^2 + \cdots + x_{k+1}^2 + y_1^2 + \cdots + y_{n-k+1}^2 = 1 \},
\]

where \(1/c_1 + 1/c_2 = 1/c \), \(k = 1, 2, \ldots, n - 1 \). Then \(S^k(c_1) \times S^{n-k}(c_2) \) is a family of hypersurfaces in \(S^{n+1}(c) \). The number of distinct principal curvatures of such hypersurfaces in this family is exactly two, and they are constant. One principal curvature is equal to \(\pm \sqrt{c_1 - c} \) with multiplicity \(k \), and the other is equal to \(\pm \sqrt{c_2 - c} \) with multiplicity \(n - k \). The sectional curvatures of a plane spanned by two principal directions are \(c_1 \), \(c_2 \) and 0, respectively. For \(S^k(c_1) \times S^{n-k}(c_2) \) in \(S^{n+1}(c) \) we can easily show that

\[
S = nc + \frac{n^3H^2}{2k(n - k)} \pm \frac{n(n - 2k)}{2k(n - k)} |H| \sqrt{n^2H^2 + 4k(n - k)c},
\]

where the plus (resp. minus) sign is taken if \(k\sqrt{c_1 - c} \geq (n - k)\sqrt{c_2 - c} \) (resp. \(k\sqrt{c_1 - c} < (n - k)\sqrt{c_2 - c} \)).

Finally, we consider the case \(c < 0 \). Let

\[
H^{n+1}(c) = \{ (x_0, x_1, \ldots, x_{n+1}) \in R^{n+2}; \, -x_0^2 + x_1^2 + \cdots + x_{n+1}^2 = 1/c \}.
\]

Define a family of hypersurfaces \(H^k(c_1) \times S^{n-k}(c_2) \) in \(H^{n+1}(c) \) by

\[
H^k(c_1) \times S^{n-k}(c_2) = \{ (x_0, x_1, \ldots, x_{n+1}) \in R^{n+2}; \, -x_0^2 + x_1^2 + \cdots + x_{k}^2 + x_{k+1}^2 + \cdots + x_{n+1}^2 = 1/c \},
\]

where \(c_1 < 0 \), \(c_2 > 0 \), \(1/c_1 + 1/c_2 = 1/c \) and \(k = 1, 2, \ldots, n - 1 \). The number of distinct principal curvatures of such hypersurfaces in this family is exactly two and they are constant. One principal curvature is equal to \(\sqrt{c_1 - c} \) with multiplicity \(k \) and the other is equal to \(\sqrt{c_2 - c} \) with multiplicity \(n - k \). The sectional curvatures are 0, \(c_2 \) and \(c_1 \) for \(1 < k < n \); they are 0 and \(c_2 \) for \(k = 1 \). For \(H^k(c_1) \times S^{n-k}(c_2) \) in \(H^{n+1}(c) \), we can also easily show that

\[
S = nc + \frac{n^3H^2}{2k(n - k)} \pm \frac{n(n - 2k)}{2k(n - k)} |H| \sqrt{n^2H^2 + 4k(n - k)c},
\]
where the plus (resp. minus) sign is taken if $k\sqrt{c_1-c} \geq (n-k)\sqrt{c_2-c}$ (resp. $k\sqrt{c_1-c} < (n-k)\sqrt{c_2-c}$).

4. Proof of Theorem

Since $K_{ij} = c + \lambda_i\lambda_j \geq 0$ for any distinct indices i and j, (2.4) means that

$$\frac{1}{2}A_5 = |\nabla B|^2 + \sum_{i<j}(\lambda_i - \lambda_j)^2(c + \lambda_i\lambda_j) \geq 0. \tag{4.1}$$

On the other hand, $K_{ij} \geq 0$ implies that the Ricci curvature of M^n is bounded from below by zero. From (2.2) we have that S is bounded from above by a constant $n(n-1)c + n^2H^2$. Then we can apply the lemma to the function S. Then we get $\{p_m\}$ in M^n such that

$$\lim_{m \to \infty} S(p_m) = \sup S, \quad \lim_{m \to \infty} \Delta S(p_m) < 0. \tag{4.2}$$

This implies that (4.1) and (4.2) give rise to

$$(c + \lambda_i\lambda_j)(\lambda_i - \lambda_j)^2(p_m) \to 0 \quad (m \to \infty), \tag{4.3}$$

for any distinct indices i and j.

Now, since $S = \sum \lambda_j^2$ is bounded, any principal curvature λ_j is bounded and hence so is any sequence $\{\lambda_j(p_m)\}$. Then there exists a subsequence $\{p_{m'}\}$ of $\{p_m\}$ such that

$$\lambda_j(p_{m'}) \to \lambda_j \quad (m' \to \infty) \quad \text{for some } \lambda_j \text{ and any } j. \tag{4.4}$$

In fact, since a sequence $\{\lambda_j(p_m)\}$ is bounded, it converges to some λ_j by taking a subsequence $\{p_{m'}\}$ if necessary. For the point sequence $\{p_{m'_1}\}$, a sequence $\{\lambda_2(p_{m'_1})\}$ is also bounded and hence there is a subsequence $\{p_{m'_2}\}$ of $\{p_{m'_1}\}$ such that $\{\lambda_2(p_{m'_2})\}$ converges to some λ_2 as m_2 tends to infinity. Thus we can inductively show that there exists a point sequence $\{p_{m'}\}$ of $\{p_m\}$ such that the property (4.4) holds. By (4.3) and (4.4) we get

$$(c + \lambda_i\lambda_j)(\lambda_i - \lambda_j)^2 = 0, \tag{4.5}$$

for any distinct indices i and j. By a simple algebraic calculation it is easily seen that the number of distinct limits in $\{\lambda_i\}$ is at most two.

Case 1. If all limits λ_i coincide with each other, because $S - nH^2 = \sum \lambda_i^2 - (1/n)(\sum \lambda_i)^2 = (1/n)\sum_{i<j}(\lambda_i - \lambda_j)^2$, it follows from the above property that $\lim_{m \to \infty}(S - nH^2)(p_{m'}) = 0$. Combining this with (4.2), we get $\sup S = nH^2$. Hence the function S becomes a constant nH^2. Accordingly, the hypersurface M^n is totally umbilical.

Case 2. If $\{\lambda_i\}$ has exactly two distinct elements, without loss of generality, we may set

$$\lambda_1 = \cdots = \lambda_k = \lambda, \quad \lambda_{k+1} = \cdots = \lambda_n = \mu, \quad \lambda < \mu,$$

for some $k = 1, 2, \ldots, n-1$. From (4.5) we have

$$\lambda\mu = -c. \tag{4.6}$$
Now, we only consider the case $c < 0$. As for the cases $c > 0$ and $c = 0$, the proof is simpler and similar to each other, we omit them.

Without loss of generality, we may assume that $H \geq 0$. Then two limits λ and μ are positive. In this case we define a negative number c_1 and a positive number c_2 by $\lambda^2 = c_1 - c$ and $\mu^2 = c_2 - c$, respectively, so these numbers satisfy

$$c < c_1 < 0, \quad c_2 > 0,$$

$$\sqrt{(c_1 - c)(c_2 - c)} = -c, \quad \text{i.e.,} \quad 1/c_1 + 1/c_2 = 1/c.$$

By $H = (1/n) \sum \lambda_i(p_{m'}) = \text{constant}$, we have

$$nH = k\lambda + (n-k)\mu = k\sqrt{c_1 - c} + (n-k)\sqrt{c_2 - c}.$$

At the same time we have

$$\sup S = \lim_{m' \to \infty} \lambda_i^2(p_{m'}) = k\lambda^2 + (n-k)\mu^2$$

$$= k(c_1 - c) + (n-k)(c_2 - c).$$

On the other hand, by using (4.7) and (4.8) we can easily see that

$$nc + \frac{n^3H^2}{2k(n-k)} \pm \frac{n(n-2k)}{2k(n-k)}|H|\sqrt{n^2H^2 + 4k(n-k)c}$$

$$= k(c_1 - c) + (n-k)(c_2 - c),$$

where the plus (resp. minus) sign is taken if $k\sqrt{c_1 - c} \geq (n-k)\sqrt{c_2 - c}$ (resp. $k\sqrt{c_1 - c} < (n-k)\sqrt{c_2 - c}$).

Thus, from (4.9) we have

$$\sup S = nc + \frac{n^3H^2}{2(n-1)} \pm \frac{n(n-2k)}{2(n-1)}|H|\sqrt{n^2H^2 + 4(n-1)c}.$$

When $k > 1$, the sectional curvature $K_{12}(p_{m'}) = (c + \lambda_1\lambda_2)(p_{m'}) \to c + \lambda^2 = c_1 < 0$, so from the assumption we have $k = 1$. Then $k\sqrt{c_1 - c} < (n-k)\sqrt{c_2 - c}$. Therefore we have at last

$$\sup S = nc + \frac{n^3H^2}{2(n-1)} - \frac{n(n-2)}{2(n-1)}|H|\sqrt{n^2H^2 + 4(n-1)c}.$$

This completes the proof of the first part of the theorem.

In particular, if $S = \text{constant}$ and M^n is connected, then (2.4) says that all the principal curvatures are constant and that they satisfy

$$(c + \lambda_i\lambda_j)(\lambda_i - \lambda_j)^2 = 0,$$

for any distinct indices i and j. Hence the number of distinct elements in $\{\lambda_i\}$ is at most two.

If $\lambda_1 = \cdots = \lambda_n$, then M^n is totally umbilical.

If $\{\lambda_i\}$ has exactly two distinct elements, without loss of generality we may assume that $\lambda_1 = \cdots = \lambda_k = \lambda$, $\lambda_{k+1} = \cdots = \lambda_n = \mu$, $\lambda < \mu$, for some $k = 1, 2, \ldots, n-1$. From (4.10) we have

$$\lambda\mu = -c.$$

For $c \geq 0$, the theorem has been proved by Nomizu and Smyth [3], so we just consider the case $c < 0$. Without loss of generality we may assume that
Then, similar to the first part, we get \(\lambda = \sqrt{c_1 - c}, \mu = \sqrt{c_2 - c} \) and \(k = 1 \), where \(c_1, c_2 \) satisfy (4.7). Thus the second fundamental form of \(M^n \) in \(H^{n+1}(c) \) is given by

\[
(h_{ij}) = \text{diag}(\sqrt{c_1 - c}, \sqrt{c_2 - c}, \ldots, \sqrt{c_2 - c}).
\]

Then, by using the method similar to that of [3] and combining with Section 3, we can show that \(M^n \) is isometric to \(H^1(c_1) \times S^{n-1}(c_2) \). Q.E.D.

Acknowledgments

I would like to express my deep gratitude to Professor Christopher B. Croke and the referee for their many helpful suggestions and their corrections on this paper.

References

Department of Mathematics, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China

Current address: Department of Mathematics, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China