Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A Dvoretsky theorem for polynomials


Author: Seán Dineen
Journal: Proc. Amer. Math. Soc. 123 (1995), 2817-2821
MSC: Primary 46B20; Secondary 46G20
DOI: https://doi.org/10.1090/S0002-9939-1995-1264807-1
MathSciNet review: 1264807
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We lift upper and lower estimates from linear functionals to n-homogeneous polynomials and using this result show that $ {l_\infty }$ is finitely represented in the space of n-homogeneous polynomials, $ n \geq 2$, on any infinite-dimensional Banach space. Refinements are also given.


References [Enhancements On Off] (What's this?)

  • [1] R. Alencar, R. M. Aron, and S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc 90 (1984), 407-411. MR 728358 (85b:46050)
  • [2] R. M. Aron and S. Dineen, Q-reflexive Banach spaces, Rocky Mountain J. Math. (to appear). MR 1627646 (99h:46010)
  • [3] J. Diestel, Sequences and series in Banach spaces, Graduate Texts in Math., vol. 92, Springer, New York and Berlin, 1984. MR 737004 (85i:46020)
  • [4] S. Dineen, Complex analysis in locally convex spaces, North-Holland Math Stud., vol. 57, North-Holland, Amsterdam and New York, 1981. MR 640093 (84b:46050)
  • [5] A. Dvoretzty, Some results on convex bodies and Banach spaces, Proc. Internat. Symposium on Linear Spaces (Jerusalem, 1961), Hebrew University, 1961, pp. 123-160. MR 0139079 (25:2518)
  • [6] J. Farmer, Polynomial reflexivity in Banach spaces, preprint. MR 1286830 (95h:46021)
  • [7] J. Farmer and W. B. Johnson, Polynomial Schur and polynomial Dunford-Pettis properties, Contemp. Math., vol. 144, Amer. Math. Soc., Providence, RI, 1993, pp. 95-105. MR 1209450 (94e:46078)
  • [8] M. Gonzalez and J. Gutierrez, Unconditionally converging polynomials on Banach spaces, Math. Proc. Cambridge Philos. Soc. (to appear). MR 1307084 (95j:46050)
  • [9] R. Gonzalo and J. A. Jarmillo, Compact polynomials between Banach spaces, preprint.
  • [10] J. Jaramillo and A. Prieto, Weak polynomial convergence on a Banach space, preprint. MR 1126196 (93g:46019)
  • [11] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I, Sequence spaces, Ergeb. Math. Grenzgeb., vol. 92, Springer-Verlag, Berlin and New York, 1977. MR 0500056 (58:17766)
  • [12] -, Classical Banach spaces. II, Function spaces, Ergeb. Math. Grenzgeb., vol. 97, Springer, New York and Berlin, 1979. MR 540367 (81c:46001)
  • [13] G. Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Math., vol. 94, Cambridge Univ. Press, Cambridge and New York, 1989. MR 1036275 (91d:52005)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20, 46G20

Retrieve articles in all journals with MSC: 46B20, 46G20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1264807-1
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society