Polynomial harmonic morphisms between Euclidean spheres

Authors:
James Eells and Paul Yiu

Journal:
Proc. Amer. Math. Soc. **123** (1995), 2921-2925

MSC:
Primary 58E20; Secondary 55R25

MathSciNet review:
1273489

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A characterization is given of the harmonic morphisms between euclidean spheres whose component functions are harmonic homogeneous polynomials of the same degree, and also of polynomial harmonic morphisms between euclidean spaces which map spheres into spheres. These turn out to be isometric to the classical Hopf fibrations.

**[B1]**Paul Baird,*Harmonic maps with symmetry, harmonic morphisms and deformations of metrics*, Research Notes in Mathematics, vol. 87, Pitman (Advanced Publishing Program), Boston, MA, 1983. MR**716320****[B2]**Paul Baird,*Harmonic morphisms and circle actions on 3- and 4-manifolds*, Ann. Inst. Fourier (Grenoble)**40**(1990), no. 1, 177–212 (English, with French summary). MR**1056781****[BR]**Paul Baird and Andrea Ratto,*Conservation laws, equivariant harmonic maps and harmonic morphisms*, Proc. London Math. Soc. (3)**64**(1992), no. 1, 197–224. MR**1132860**, 10.1112/plms/s3-64.1.197**[BW]**Paul Baird and John C. Wood,*Bernstein theorems for harmonic morphisms from 𝑅³ and 𝑆³*, Math. Ann.**280**(1988), no. 4, 579–603. MR**939920**, 10.1007/BF01450078**[Br]**William Browder,*Higher torsion in 𝐻-spaces*, Trans. Amer. Math. Soc.**108**(1963), 353–375. MR**0155326**, 10.1090/S0002-9947-1963-0155326-8**[EK]**James Eells Jr. and Nicolaas Kuiper H.,*An invariant for certain smooth manifolds*, Ann. Mat. Pura Appl. (4)**60**(1962), 93–110. MR**0156356****[EL1]**J. Eells and L. Lemaire,*A report on harmonic maps*, Bull. London Math. Soc.**10**(1978), no. 1, 1–68. MR**495450**, 10.1112/blms/10.1.1**[EL2]**-,*Topics in harmonic maps*, CBMS Regional Conf. Ser. in Math., vol. 50, Amer. Math. Soc., Providence, RI, 1983.**[EL3]**J. Eells and L. Lemaire,*Another report on harmonic maps*, Bull. London Math. Soc.**20**(1988), no. 5, 385–524. MR**956352**, 10.1112/blms/20.5.385**[ER]**James Eells and Andrea Ratto,*Harmonic maps and minimal immersions with symmetries*, Annals of Mathematics Studies, vol. 130, Princeton University Press, Princeton, NJ, 1993. Methods of ordinary differential equations applied to elliptic variational problems. MR**1242555****[F]**Bent Fuglede,*Harmonic morphisms between Riemannian manifolds*, Ann. Inst. Fourier (Grenoble)**28**(1978), no. 2, vi, 107–144 (English, with French summary). MR**499588****[G]**G. Gigante,*A note on harmonic morphisms*, preprint, 1983.**[H]**Agnes Chi Ling Hsu,*A characterization of the Hopf map by stretch*, Math. Z.**129**(1972), 195–206. MR**0312519****[I]**Tôru Ishihara,*A mapping of Riemannian manifolds which preserves harmonic functions*, J. Math. Kyoto Univ.**19**(1979), no. 2, 215–229. MR**545705****[KR]**H.-D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel, and R. Remmert,*Numbers*, Graduate Texts in Mathematics, vol. 123, Springer-Verlag, New York, 1990. With an introduction by K. Lamotke; Translated from the second German edition by H. L. S. Orde; Translation edited and with a preface by J. H. Ewing; Readings in Mathematics. MR**1066206****[W]**R. Wood,*Polynomial maps from spheres to spheres*, Invent. Math.**5**(1968), 163–168. MR**0227999****[Y]**Paul Y. H. Yiu,*Quadratic forms between spheres and the nonexistence of sums of squares formulae*, Math. Proc. Cambridge Philos. Soc.**100**(1986), no. 3, 493–504. MR**857724**, 10.1017/S0305004100066226

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
58E20,
55R25

Retrieve articles in all journals with MSC: 58E20, 55R25

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1995-1273489-4

Keywords:
Harmonic morphisms,
Hopf fibrations,
orthogonal multiplications,
polynomial maps between spheres

Article copyright:
© Copyright 1995
American Mathematical Society