Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Polynomial harmonic morphisms between Euclidean spheres


Authors: James Eells and Paul Yiu
Journal: Proc. Amer. Math. Soc. 123 (1995), 2921-2925
MSC: Primary 58E20; Secondary 55R25
DOI: https://doi.org/10.1090/S0002-9939-1995-1273489-4
MathSciNet review: 1273489
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A characterization is given of the harmonic morphisms between euclidean spheres whose component functions are harmonic homogeneous polynomials of the same degree, and also of polynomial harmonic morphisms between euclidean spaces which map spheres into spheres. These turn out to be isometric to the classical Hopf fibrations.


References [Enhancements On Off] (What's this?)

  • [B1] P. Baird, Harmonic maps with symmetry, harmonic morphisms and deformations of metrics, Res. Notes in Math., vol. 87, Pitman, London, 1983. MR 716320 (85i:58038)
  • [B2] -, Harmonic morphisms and circle actions on 3- and 4-manifolds, Ann. Inst. Fourier (Grenoble) 40 (1990), 177-212. MR 1056781 (91e:57025)
  • [BR] P. Baird and A. Ratto, Conservation laws, equivariant harmonic maps and harmonic morphisms, Proc. London Math. Soc. (3) 64 (1992), 197-224. MR 1132860 (93a:58045)
  • [BW] P. Baird and J.C. Wood, Bernstein theorems for harmonic morphisms from $ \mathbb{R}$ and $ {S^3}$, Math. Ann. 280 (1988), 579-603. MR 939920 (90e:58027)
  • [Br] W. Browder, Higher torsion in H-spaces, Trans. Amer. Math. Soc. 108 (1965), 353-375. MR 0155326 (27:5260)
  • [EK] J. Eells and N. Kuiper, An invariant for certain smooth manifolds, Ann. Mat. Pura Appl. 60 (1963), 93-110. MR 0156356 (27:6280)
  • [EL1] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68. MR 495450 (82b:58033)
  • [EL2] -, Topics in harmonic maps, CBMS Regional Conf. Ser. in Math., vol. 50, Amer. Math. Soc., Providence, RI, 1983.
  • [EL3] -, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524. MR 956352 (89i:58027)
  • [ER] J. Eells and A. Ratto, Harmonic maps and minimal immersions with symmetries, Ann. of Math. Studies, vol. 130, Princeton Univ. Press, Princeton, NJ, 1993. MR 1242555 (94k:58033)
  • [F] B. Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble) 28 (1978), 107-144. MR 499588 (80h:58023)
  • [G] G. Gigante, A note on harmonic morphisms, preprint, 1983.
  • [H] A.C.L. Hsu, A characterization of the Hopf map by stretch, Math. Z. 129 (1972), 195-206. MR 0312519 (47:1076)
  • [I] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ. 19 (1979), 215-229. MR 545705 (80k:58045)
  • [KR] M. Koecher and R. Remmert, "Composition algebras. Hurwitz's theorem--vector product algebras", Chapter 10 in H.-D. Ebbinghaus et al., Numbers, Graduate Texts in Math., vol. 123, Springer-Verlag, Berlin, 1990, pp. 265-280. MR 1066206 (91h:00005)
  • [W] R. Wood, Polynomial maps from spheres to spheres, Invent. Math. 5 (1968), 163-168. MR 0227999 (37:3583)
  • [Y] P. Yiu, Quadratic forms between spheres and the non-existence of sums of squares formulae, Math. Proc. Cambridge Philos. Soc. 100 (1986), 493-504. MR 857724 (87m:55019)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58E20, 55R25

Retrieve articles in all journals with MSC: 58E20, 55R25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1273489-4
Keywords: Harmonic morphisms, Hopf fibrations, orthogonal multiplications, polynomial maps between spheres
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society