Polynomial harmonic morphisms between Euclidean spheres
Authors:
James Eells and Paul Yiu
Journal:
Proc. Amer. Math. Soc. 123 (1995), 29212925
MSC:
Primary 58E20; Secondary 55R25
MathSciNet review:
1273489
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A characterization is given of the harmonic morphisms between euclidean spheres whose component functions are harmonic homogeneous polynomials of the same degree, and also of polynomial harmonic morphisms between euclidean spaces which map spheres into spheres. These turn out to be isometric to the classical Hopf fibrations.
 [B1]
Paul
Baird, Harmonic maps with symmetry, harmonic morphisms and
deformations of metrics, Research Notes in Mathematics, vol. 87,
Pitman (Advanced Publishing Program), Boston, MA, 1983. MR 716320
(85i:58038)
 [B2]
Paul
Baird, Harmonic morphisms and circle actions on 3 and
4manifolds, Ann. Inst. Fourier (Grenoble) 40 (1990),
no. 1, 177–212 (English, with French summary). MR 1056781
(91e:57025)
 [BR]
Paul
Baird and Andrea
Ratto, Conservation laws, equivariant harmonic maps and harmonic
morphisms, Proc. London Math. Soc. (3) 64 (1992),
no. 1, 197–224. MR 1132860
(93a:58045), http://dx.doi.org/10.1112/plms/s364.1.197
 [BW]
Paul
Baird and John
C. Wood, Bernstein theorems for harmonic morphisms from
𝑅³ and 𝑆³, Math. Ann. 280
(1988), no. 4, 579–603. MR 939920
(90e:58027), http://dx.doi.org/10.1007/BF01450078
 [Br]
William
Browder, Higher torsion in
𝐻spaces, Trans. Amer. Math. Soc.
108 (1963),
353–375. MR 0155326
(27 #5260), http://dx.doi.org/10.1090/S00029947196301553268
 [EK]
James
Eells Jr. and Nicolaas
Kuiper H., An invariant for certain smooth manifolds, Ann.
Mat. Pura Appl. (4) 60 (1962), 93–110. MR 0156356
(27 #6280)
 [EL1]
J.
Eells and L.
Lemaire, A report on harmonic maps, Bull. London Math. Soc.
10 (1978), no. 1, 1–68. MR 495450
(82b:58033), http://dx.doi.org/10.1112/blms/10.1.1
 [EL2]
, Topics in harmonic maps, CBMS Regional Conf. Ser. in Math., vol. 50, Amer. Math. Soc., Providence, RI, 1983.
 [EL3]
J.
Eells and L.
Lemaire, Another report on harmonic maps, Bull. London Math.
Soc. 20 (1988), no. 5, 385–524. MR 956352
(89i:58027), http://dx.doi.org/10.1112/blms/20.5.385
 [ER]
James
Eells and Andrea
Ratto, Harmonic maps and minimal immersions with symmetries,
Annals of Mathematics Studies, vol. 130, Princeton University Press,
Princeton, NJ, 1993. Methods of ordinary differential equations applied to
elliptic variational problems. MR 1242555
(94k:58033)
 [F]
Bent
Fuglede, Harmonic morphisms between Riemannian manifolds, Ann.
Inst. Fourier (Grenoble) 28 (1978), no. 2, vi,
107–144 (English, with French summary). MR 499588
(80h:58023)
 [G]
G. Gigante, A note on harmonic morphisms, preprint, 1983.
 [H]
Agnes
Chi Ling Hsu, A characterization of the Hopf map by stretch,
Math. Z. 129 (1972), 195–206. MR 0312519
(47 #1076)
 [I]
Tôru
Ishihara, A mapping of Riemannian manifolds which preserves
harmonic functions, J. Math. Kyoto Univ. 19 (1979),
no. 2, 215–229. MR 545705
(80k:58045)
 [KR]
H.D.
Ebbinghaus, H.
Hermes, F.
Hirzebruch, M.
Koecher, K.
Mainzer, J.
Neukirch, A.
Prestel, and R.
Remmert, Numbers, Graduate Texts in Mathematics,
vol. 123, SpringerVerlag, New York, 1990. With an introduction by K.
Lamotke; Translated from the second German edition by H. L. S. Orde;
Translation edited and with a preface by J. H. Ewing; Readings in
Mathematics. MR
1066206 (91h:00005)
 [W]
R.
Wood, Polynomial maps from spheres to spheres, Invent. Math.
5 (1968), 163–168. MR 0227999
(37 #3583)
 [Y]
Paul
Y. H. Yiu, Quadratic forms between spheres and the nonexistence of
sums of squares formulae, Math. Proc. Cambridge Philos. Soc.
100 (1986), no. 3, 493–504. MR 857724
(87m:55019), http://dx.doi.org/10.1017/S0305004100066226
 [B1]
 P. Baird, Harmonic maps with symmetry, harmonic morphisms and deformations of metrics, Res. Notes in Math., vol. 87, Pitman, London, 1983. MR 716320 (85i:58038)
 [B2]
 , Harmonic morphisms and circle actions on 3 and 4manifolds, Ann. Inst. Fourier (Grenoble) 40 (1990), 177212. MR 1056781 (91e:57025)
 [BR]
 P. Baird and A. Ratto, Conservation laws, equivariant harmonic maps and harmonic morphisms, Proc. London Math. Soc. (3) 64 (1992), 197224. MR 1132860 (93a:58045)
 [BW]
 P. Baird and J.C. Wood, Bernstein theorems for harmonic morphisms from and , Math. Ann. 280 (1988), 579603. MR 939920 (90e:58027)
 [Br]
 W. Browder, Higher torsion in Hspaces, Trans. Amer. Math. Soc. 108 (1965), 353375. MR 0155326 (27:5260)
 [EK]
 J. Eells and N. Kuiper, An invariant for certain smooth manifolds, Ann. Mat. Pura Appl. 60 (1963), 93110. MR 0156356 (27:6280)
 [EL1]
 J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 168. MR 495450 (82b:58033)
 [EL2]
 , Topics in harmonic maps, CBMS Regional Conf. Ser. in Math., vol. 50, Amer. Math. Soc., Providence, RI, 1983.
 [EL3]
 , Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385524. MR 956352 (89i:58027)
 [ER]
 J. Eells and A. Ratto, Harmonic maps and minimal immersions with symmetries, Ann. of Math. Studies, vol. 130, Princeton Univ. Press, Princeton, NJ, 1993. MR 1242555 (94k:58033)
 [F]
 B. Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble) 28 (1978), 107144. MR 499588 (80h:58023)
 [G]
 G. Gigante, A note on harmonic morphisms, preprint, 1983.
 [H]
 A.C.L. Hsu, A characterization of the Hopf map by stretch, Math. Z. 129 (1972), 195206. MR 0312519 (47:1076)
 [I]
 T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ. 19 (1979), 215229. MR 545705 (80k:58045)
 [KR]
 M. Koecher and R. Remmert, "Composition algebras. Hurwitz's theoremvector product algebras", Chapter 10 in H.D. Ebbinghaus et al., Numbers, Graduate Texts in Math., vol. 123, SpringerVerlag, Berlin, 1990, pp. 265280. MR 1066206 (91h:00005)
 [W]
 R. Wood, Polynomial maps from spheres to spheres, Invent. Math. 5 (1968), 163168. MR 0227999 (37:3583)
 [Y]
 P. Yiu, Quadratic forms between spheres and the nonexistence of sums of squares formulae, Math. Proc. Cambridge Philos. Soc. 100 (1986), 493504. MR 857724 (87m:55019)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
58E20,
55R25
Retrieve articles in all journals
with MSC:
58E20,
55R25
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199512734894
PII:
S 00029939(1995)12734894
Keywords:
Harmonic morphisms,
Hopf fibrations,
orthogonal multiplications,
polynomial maps between spheres
Article copyright:
© Copyright 1995
American Mathematical Society
