ANOTHER GENERALIZATION OF ANDERSON'S THEOREM

DU HONG-KE

(Communicated by Palle E. T. Jorgensen)

Abstract. In this paper, we prove that if \(A \) and \(B \) are normal operators on a Hilbert space \(H \), then, for every operator \(S \) satisfying \(ASB = S \), \(\|AXB - X + S\| \geq \|A^{-1}\|\|B^{-1}\|\|S\| \) for all operators \(X \in B(H) \), and that if \(A \) and \(B \) are contractions, then, for every operator \(S \) satisfying \(ASB = S \) and \(A^*SB^* = S \), \(\|AXB - X + S\| \geq \|S\| \) for all operators \(X \in B(H) \), where \(B(H) \) denotes the set of all bounded linear operators on \(H \).

1. INTRODUCTION

Let \(B(H) \) denote the set of all bounded linear operators on a Hilbert space \(H \). Anderson ([1]) proved that

Theorem A. If \(A \) is a normal operator, then, for every operator \(S \) satisfying \(AS = SA \),

\[
\|S - (AX - XA)\| \geq \|S\|
\]

for all operators \(X \in B(H) \).

Recently, H. Du and W. Xu ([2]) obtained an alternative proof of Anderson's theorem that depends only on the spectral representation of normal operators and proved that

Theorem D-X. Let operators \(A \) and \(B \) be in \(B(H) \). If an operator \(C \) satisfies \(AC = CB \), \(A^*C = CB^* \) and \(\|C\| > \|C\|_e \), then

\[
\|C - (AX - XB)\| \geq \|C\|
\]

for all \(X \in B(H) \), where \(\|C\|_e \) denotes the essential norm of \(C \).

Duggal ([3]) proved that if \(A \) and \(B \) are contractions, then \(S \in C_2 \) and \(ASB - S = 0 \) imply \(\|AXB - X + S\|_2 \geq \|AXB - X\|_2 + \|S\|_2 \) for all \(X \in B(H) \), where \(C_2 \) denotes the Hilbert-Schmidt class of \(B(H) \).

In this note, we shall prove the following theorems:
Theorem 1. If A is a normal operator in $B(H)$, then, for every operator S satisfying $ASA = S$,
\[\|AXA - X + S\| \geq \|A\|^{-2}\|S\|,\]
for all $X \in B(H)$.

Theorem 2. If A is a contraction in $B(H)$, then, for every operator S satisfying $ASA^* = S$ and $A^*SA = S$,
\[\|AXA - X + S\| \geq \|S\|,\]
for all $X \in B(H)$.

Remark. In the above two theorems, putting $A = I$, it is easy to see that the estimates are sharp.

2. Proof of the theorems

Proof of Theorem 1. If $\|A\| < 1$, since $ASA = S$ implies $S = 0$, it is nothing to prove. So we assume that $\|A\| \geq 1$. In this case, take any α such that $(1 - \alpha)\|A\| < 1$, so $\alpha > 1 - \|A\|^{-1}$. Denote $\Delta_\alpha = \{\lambda \in \sigma(A) : |\lambda| \leq 1 - \alpha\}$ and by $E(\cdot)$ the spectral measure of A (the spectrum of an operator T is denoted by $\sigma(T)$). Then $E(\Delta_\alpha)H$ reduces A, so A and S have the operator matrix forms
\[A = \begin{pmatrix} A_{1\alpha} & 0 \\ 0 & A_{2\alpha} \end{pmatrix}, \quad S = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix},\]
with respect to the space decomposition $H = E(\Delta_\alpha)H \oplus E(\Delta_\alpha')H$, respectively, where $\Delta_\alpha' = \sigma(A) \setminus \Delta_\alpha$. It is easy to see that $\|A_{1\alpha}\| \leq 1 - \alpha < 1$, $\|A_{2\alpha}\| = \|A\|$ and $\sigma(A_{2\alpha}) \subset \Delta_\alpha'$, so $A_{2\alpha}$ is invertible on $E(\Delta_\alpha')H$ and $\|A_{2\alpha}^{-1}\| \leq \frac{1}{1-\alpha}$. By the hypothesis $ASA = S$, we obtain
\[\begin{pmatrix} A_{1\alpha} & 0 \\ 0 & A_{2\alpha} \end{pmatrix} \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} A_{1\alpha} & 0 \\ 0 & A_{2\alpha} \end{pmatrix} = \begin{pmatrix} A_{1\alpha}S_{11}A_{1\alpha} & A_{1\alpha}S_{12}A_{2\alpha} \\ A_{2\alpha}S_{21}A_{1\alpha} & A_{2\alpha}S_{22}A_{2\alpha} \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix},\]
so
(1) $A_{1\alpha}S_{11}A_{1\alpha} = S_{11},$
(2) $A_{1\alpha}S_{12}A_{2\alpha} = S_{12},$
(3) $A_{2\alpha}S_{21}A_{1\alpha} = S_{21},$
(4) $A_{2\alpha}S_{22}A_{2\alpha} = S_{22}.$

From (1), (2), (3) and every positive integer n, we get
(5) $A_{1\alpha}^nS_{11}A_{1\alpha}^n = S_{11},$
(6) $A_{1\alpha}^nS_{12}A_{2\alpha}^n = S_{12},$
(7) $A_{2\alpha}^nS_{21}A_{1\alpha}^n = S_{21},$
respectively. Therefore,
(8) $\|A_{1\alpha}\|^2\|S_{11}\| \geq \|S_{11}\|,$
(9) $\|A_{1\alpha}\|^n\|S_{12}\|\|A_{2\alpha}\|^n \geq \|S_{12}\|,$
(10) $\|A_{2\alpha}\|^n\|S_{21}\|\|A_{1\alpha}\|^n \geq \|S_{21}\|.$
But, by the choice of \(\alpha \), \(\|A_{1\alpha}\|^n \to 0 \) and \((\|A_{1\alpha}\|^n\|A_{2\alpha}\|^n) \leq ((1 - \alpha)\|A\|)^n \to 0 \) (as \(n \to \infty \)), hence \(S_{11} = 0 \), \(S_{12} = 0 \) and \(S_{21} = 0 \). It shows that

\[
S = \begin{pmatrix} 0 & 0 \\ 0 & S_{22} \end{pmatrix}
\]

and \(\|S_{22}\| = \|S\| \). Letting \(X_\alpha = E(\Delta'_{\alpha})XE(\Delta'_{\alpha}) \), we now get

\[
\|AXA - X + S\| \geq \|E(\Delta'_{\alpha})(AXA - X + S)E(\Delta'_{\alpha})\|
\]

\[
= \|A_{2\alpha}X_\alpha A_{2\alpha} - X_\alpha + S_{22}\|
\]

\[
= \|A_{2\alpha}(X_\alpha A_{2\alpha} - A_{2\alpha}^{-1}X_\alpha + A_{2\alpha}^{-1}S_{22})\|
\]

\[
\geq \frac{1}{\|A_{2\alpha}\|} \|X_\alpha A_{2\alpha} - A_{2\alpha}^{-1}X_\alpha + A_{2\alpha}^{-1}S_{22}\|
\]

\[
\geq (1 - \alpha)\|X_\alpha A_{1\alpha} - A_{2\alpha}^{-1}X_\alpha + A_{2\alpha}^{-1}S_{22}\|
\]

Note that by (4) \(A_{2\alpha}^{-1}S_{22}A_{2\alpha} - A_{2\alpha}^{-1}A_{2\alpha}^{-1}S_{22} = A_{2\alpha}^{-2}(A_{2\alpha}S_{22}A_{2\alpha} - S_{22}) = 0 \), so moreover by Anderson’s Theorem

\[
\|X_\alpha A_{2\alpha} - A_{2\alpha}^{-1}X_\alpha + A_{2\alpha}^{-1}S_{22}\| \geq \|A_{2\alpha}^{-1}S_{22}\|
\]

\[
\geq \frac{1}{\|A_{2\alpha}\|} \|S_{22}\| = \|A\|^{-1}\|S\|.
\]

That is, \(\|AXA - X + S\| \geq (1 - \alpha)\|A\|^{-1}\|S\| \). But, by the choice of \(\alpha \), we may choose \(\alpha \) such that \((1 - \alpha)\|A\| \) is sufficiently close to 1, so

\[
\|AXA - X + S\| \geq \|A\|^{-2}\|S\|.
\]

We have finished the proof.

Corollary 2.1. If \(A \) and \(B \) are normal, then for every operator \(S \) satisfying \(ASB = S \) and all operators \(X \in B(H) \),

\[
\|AXB - X + S\| \geq \|A\|^{-1}\|B\|^{-1}\|S\|.
\]

Proof. Suppose that

\[
\tilde{A} = \begin{pmatrix} \sqrt{\frac{\|B\|}{\|A\|}} A & 0 \\ 0 & \sqrt{\frac{\|A\|}{\|B\|}} B \end{pmatrix}, \quad \tilde{X} = \begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix}, \quad \text{and} \quad \tilde{S} = \begin{pmatrix} 0 & S \\ 0 & 0 \end{pmatrix}.
\]

Then

\[
\tilde{A} \tilde{S} \tilde{A} = \begin{pmatrix} \sqrt{\frac{\|B\|}{\|A\|}} A & 0 \\ 0 & \sqrt{\frac{\|A\|}{\|B\|}} B \end{pmatrix} \begin{pmatrix} 0 & S \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \sqrt{\frac{\|B\|}{\|A\|}} A & 0 \\ 0 & \sqrt{\frac{\|A\|}{\|B\|}} B \end{pmatrix} = \begin{pmatrix} 0 & ASB \\ 0 & 0 \end{pmatrix} = \tilde{S},
\]

\(\|\tilde{S}\| = \|S\| \), and \(\|\tilde{A}\| = \sqrt{\|A\|\|B\|} \). By Theorem 1,

\[
\|AXB - X + S\| = \|\tilde{A} \tilde{X} \tilde{A} - \tilde{X} + \tilde{S}\|
\]

\[
\geq ||\tilde{A}||^{-2}\|\tilde{S}\| = ||A||^{-1}\|B\|^{-1}\|S\|.
\]

Now we turn to the proof of Theorem 2.
Proof of Theorem 2. If \(\|A\| < 1 \), it is clear that \(S = 0 \), so there is nothing to do. Now we suppose \(\|A\| = 1 \). For convenience, we will divide the proof into several steps.

(1) Let \(A = UP \) be the polar decomposition of \(A \), we shall show that \(PS = S = SP \). From the hypotheses \(ASA^* = S \) and \(A^*SA = S \), we get \(A^*ASA^*A = S \); so

\[
P^2SP^2 = S.
\]

Hence for all positive integers \(n \),

\[
P^{2n}SP^{2n} = S.
\]

If the spectral measure of \(P \) is denoted by \(E(\cdot) \), let \(\Delta_\epsilon = \{ \lambda \in \sigma(P) : \lambda < 1 - \epsilon \} \) for arbitrary \(\epsilon > 0 \); multiplying both sides of the above equation on the left by \(E(\Delta_\epsilon) \), we get

\[
(E(\Delta_\epsilon)P(E(\Delta_\epsilon)))^{2n}SP^{2n} = E(\Delta_\epsilon)S.
\]

Since \(\|E(\Delta_\epsilon)P(E(\Delta_\epsilon))\| < 1 - \epsilon \), it follows that \(\lim_{n \to \infty} (E(\Delta_\epsilon)P(E(\Delta_\epsilon)))^{2n} = 0 \), so

\[
E(\Delta_\epsilon)S = 0.
\]

Similarly, \(SE(\Delta_\epsilon) = 0 \). We shall show that \(PS = S \) and \(SP = S \). In fact, it is clear that the spectrum \(\sigma(P) \) is included in \([0, 1]\), so we can suppose that \(P = \int_0^1 \lambda dE_\lambda \) is the spectral representation of \(P \). Then for any \(1 > \epsilon > 0 \), since \(\int_0^{1-\epsilon} \lambda dE_\lambda S = 0 \), we obtain

\[
\|PS - S\| = \left\| \int_0^1 (\lambda - 1) dE_\lambda S \right\| = \left\| \int_0^{1-\epsilon} (\lambda - 1) dE_\lambda S + \int_{1-\epsilon}^1 (\lambda - 1) dE_\lambda S \right\| \leq \epsilon \|S\|.
\]

Because \(\epsilon \) is arbitrary, \(PS = S \). Similarly, \(SP = S \).

(2) We will prove that \(SU = US \) and \(SU^* = U^*S \).

Denote the range of an operator \(T \) by \(R(T) \), note that \(A^*SA = S \) implies that \(R(S) \subset R(A^*) \) and \(U^*U \) is the projection on \(R(A^*)^\perp \), where the \(R(A^*)^\perp \) means the closure of \(R(A^*) \). So, since \(ASA^* = UPSU^* = USU^* \) from (1) and multiplying both sides of \(ASA^* = S \) on the left by \(U^* \), it follows that \(U^*S = SU^* \). Similarly, we have \(US = SU \).

(3) Suppose that \(S = VQ \) is the polar decomposition of \(S \), where \(Q = (S^*S)^{-\frac{1}{2}} \), and \(\|S\| \) is an isolated point of \(\sigma(Q) \). We shall show that in this case the theorem holds.

Since \(S^*SA = AS^*A^*SA = AS^*S \), so \(QA = AQ \). Let \(Q = \int_0^{\|S\|} \lambda dF_\lambda \) be the spectral representation of \(Q \); by the hypothesis that \(\|S\| \) is an isolated point of \(\sigma(Q) \), then \(F(\|S\|)A = AF(\|S\|) \). From (1), we get \(A^*S^*SA = S^*S \), that is, \(A^*Q^2A = Q^2 \). Multiplying both sides of the above on the left and the right by \(F(\|S\|) \), respectively, and defining \(A_1 = F(\|S\|)AF(\|S\|) \), then

\[
A_1^*\|S\|^2A_1 = \|S\|^2.
\]

We therefore obtain \(A_1^*A_1 = I \) on the space \(F(\|S\|)H \), where \(I \) denotes the identity on \(F(\|S\|)H \). Similarly, \(A_1A_1^* = I \). These show that \(A_1 \) is a unitary
operator on the space $F(||S||)H$. In this case,

$$\|S\| \|AXA^* - X + S\|$$

$$\geq \|S^*AXA^* - S^*X + S^*S\|$$

$$= \|AS^*XA^* - S^*X + S^*S\|$$

$$\geq \|F(||S||)(AS^*XA^* - S^*X + S^*S)F(||S||)||$$

$$= \|A_1F(||S||)S^*XF(||S||)A_1^* - F(||S||)S^*XF(||S||) + ||S||^2F(||S||)||. $$

Let $X_1 = F(||S||)S^*XF(||S||)$ and note that A_1 is a unitary operator on $F(||S||)H$; then

$$\|AXA^* - X + S\| \geq \|S\|. $$

(4) The general case. As in case (3), let $S = VQ$ be the polar decomposition of S. For any $\varepsilon > 0$, define $Q_\varepsilon = \int_0^{1-\varepsilon} \lambda dF - \lambda + F([||S|| - \varepsilon, ||S||])$ and $S_\varepsilon = VQ_\varepsilon$; since $QA = AQ$, we get $F([||S|| - \varepsilon, ||S||])A = AF([||S|| - \varepsilon, ||S||])$ and

$$\int_0^{||S||-\varepsilon} \lambda dF_A = F([0, ||S|| - \varepsilon]) \int_0^{||S||} dF_A = F([0, ||S|| - \varepsilon])AQ$$

$$= AF([0, ||S|| - \varepsilon])Q = A \int_0^{||S||-\varepsilon} \lambda dF - \lambda.$$

So $Q_\varepsilon A = AQ_\varepsilon$.

Next, from $ASA^* = S$ follows $AVA^* = VQ$, hence $(AVA^* - V)Q = 0$. It is clear that $R(Q_\varepsilon) = R(Q)$; therefore $(AVA^* - V)Q_\varepsilon = 0$, that is, $AS_\varepsilon A^* = S_\varepsilon$.

Similarly, $A^*S_\varepsilon A = S_\varepsilon$. Clearly, $||S|| = ||S_\varepsilon||$. By (3), we get

$$\|AXA^* - X + S\| = \|AXA^* - X + S_\varepsilon - S_\varepsilon + S\|$$

$$\geq \|AXA^* - X + S_\varepsilon\| - ||S_\varepsilon - S||$$

$$= ||S_\varepsilon|| - \varepsilon = ||S|| - \varepsilon.$$

Finally, since ε is arbitrary,

$$\|AXA^* - X + S\| \geq ||S||.$$

The proof is completed.

Corollary 2.2. Let A and B be operators in $B(H)$. If $\|A\| \|B\| \leq 1$, then, for every operator S satisfying $ASB = S$ and $A^*SB^* = S$,

$$\|AXB - X + S\| \geq ||S||,$$

for all $X \in B(H)$.

Proof. Define

$$\tilde{A} = \begin{pmatrix} \sqrt{||B||/A} & 0 \\ 0 & \sqrt{||A||/B^*} \end{pmatrix}, \quad \tilde{X} = \begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix}, \quad \text{and} \quad \tilde{S} = \begin{pmatrix} 0 & S \\ 0 & 0 \end{pmatrix}.$$
Then $\tilde{A}\tilde{S}\tilde{A}^* = \tilde{S}$ and $\tilde{A}^*\tilde{S}\tilde{A} = \tilde{S}$; by Theorem 2

$$\|AXB - X + S\| = \|\tilde{A}\tilde{X}\tilde{A}^* - \tilde{X} + \tilde{S}\| \geq \|	ilde{S}\| = \|S\|.$$

REFERENCES

DEPARTMENT OF MATHEMATICS, SHAANXI NORMAL UNIVERSITY, XI’AN, PEOPLE’S REPUBLIC OF CHINA, 710062