Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Monotonicity properties of Lorentz spaces


Authors: Henryk Hudzik and Anna Kamińska
Journal: Proc. Amer. Math. Soc. 123 (1995), 2715-2721
MSC: Primary 46E30; Secondary 46B04
DOI: https://doi.org/10.1090/S0002-9939-1995-1273499-7
MathSciNet review: 1273499
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Criteria for uniform monotonicity, local uniform monotonicity and strict monotonicity of Lorentz spaces are given.


References [Enhancements On Off] (What's this?)

  • [1] M. A. Akcoglu and L. Sucheston, On uniform monotonicity of norms and ergodic theorems in function spaces, Rend. Circ. Mat. Palermo (2) Suppl. 8 (1985), 325-335. MR 881411 (88m:46029)
  • [2] G. Birkhoff, Lattice theory, Amer. Math. Soc., Providence, RI, 1967. MR 0227053 (37:2638)
  • [3] B. Bru and H. Heinich, Monotonies des espaces d'Orlicz, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 893-894. MR 823148 (87a:46041)
  • [4] -, Applications de dualite dans les espaces de Käthe, Studia Math. 93 (1989), 41-69. MR 989567 (90m:46046)
  • [5] N. L. Carothers, Rearrangement invariant subspaces of Lorentz function spaces, Israel J. Math. 40 (1981), 217-228. MR 654578 (83h:46041)
  • [6] J. Cerda, H. Hudzik, and M. Mastylo, On the geometry of some Calderón-Lozanovskii interpolation spaces, Indag. Math. (to appear). MR 1324436 (96b:46041)
  • [7] W. J. Davis, N. Ghossoub, and J. Lindenstrauss, A lattice renorming theorem and applications to vector-valued processes, Trans. Amer. Math. Soc. 263 (1981), 531-540. MR 594424 (83d:46023)
  • [8] I. Halperin, Uniform convexity in function spaces, Duke Math. J. 21 (1954), 195-204. MR 0061756 (15:880b)
  • [9] H. Hudzik and W. Kurc, Monotonicity properties of Musielak-Orlicz spaces equipped with the Orlicz norm (to appear).
  • [10] A. Kamińska, Uniform convexity of generalized Lorentz spaces, Arch. Math. 56 (1991), 181-188. MR 1086486 (92f:46030)
  • [11] S. G. Krein, Yu. J. Petunin, and E. M. Semenov, Interpolation of linear operators, Transl. Math. Monographs, vol. 54, Amer. Math. Soc., Providence, RI, 1982. MR 649411 (84j:46103)
  • [12] W. Kurc, Strictly and uniformly monotone Musielak- Olricz spaces and applications to best approximation, J. Approx. Theory 69 (1992), 173-187. MR 1160253 (93g:46028)
  • [13] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Springer-Verlag, Berlin, Heidelberg, and New York, 1979. MR 540367 (81c:46001)
  • [14] W. A. J. Luxemburg and A. Zaanen, Riesz spaces I, North-Holland, Amsterdam and London, 1971.
  • [15] A. Medzhitov and Ph. Sukochev, The property (H) in Orlicz spaces, Bull. Polish Acad. Sci. Math. 40 (1992), 5-11. MR 1402302 (97e:46033)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E30, 46B04

Retrieve articles in all journals with MSC: 46E30, 46B04


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1273499-7
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society