Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Number of equilibrium states of piecewise monotonic maps of the interval


Author: Jérôme Buzzi
Journal: Proc. Amer. Math. Soc. 123 (1995), 2901-2907
MSC: Primary 58F11; Secondary 28D20, 54H20, 58F03
Erratum: Proc. Amer. Math. Soc. 125 (1997), 3131.
MathSciNet review: 1277099
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a bound of the form suggested by S. Newhouse for the number of measures with maximal entropy for a piecewise monotonic map with N monotonicity intervals: $ 4(N - 1)$. More generally we consider a potential $ \phi $ of bounded distortion. If $ \sup \phi < P(f,\phi )$, we give an explicit bound in terms of N and of the pressure.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58F11, 28D20, 54H20, 58F03

Retrieve articles in all journals with MSC: 58F11, 28D20, 54H20, 58F03


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1995-1277099-4
PII: S 0002-9939(1995)1277099-4
Article copyright: © Copyright 1995 American Mathematical Society



Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia