Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Markov's exponent of compact sets in $ \bold C\sp n$


Authors: M. Baran and W. Pleśniak
Journal: Proc. Amer. Math. Soc. 123 (1995), 2785-2791
MSC: Primary 41A17; Secondary 32E20, 32F05
DOI: https://doi.org/10.1090/S0002-9939-1995-1301486-9
MathSciNet review: 1301486
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce the notion of Markov's exponent of a compact set in $ {\mathbb{C}^n}$ and show that it is invariant under regular analytic maps.


References [Enhancements On Off] (What's this?)

  • [B1] M. Baran, Bernstein type theorems for compact sets in $ {\mathbb{R}^n}$ revisited, J. Approx. Theory 79 (1994), 190-198. MR 1302342 (95h:41023)
  • [B2] -, Markov inequality on sets with polynomial parametrization, Ann. Polon. Math. 60 (1994), 69-79. MR 1295109 (95f:41006)
  • [BC] L. Białas-Cież, Equivalence of Markov's property and Hölder continuity of the Green function for Cantor type sets, Jagiellonian University, preprint, 1993.
  • [G] P. Goetgheluck, Inégalité de Markov dans les ensembles efillés, J. Approx, Theory 30 (1980), 149-154. MR 610551 (82g:26019)
  • [M] L. Maligranda, Indices and interpolation, Dissertationes Math. (Rozprawy Mat.) 234 (1985), 1-49. MR 820076 (87k:46059)
  • [PP1] W. Pawłucki and W. Pleśniak, Markov's inequality and $ {\mathcal{C}^\infty }$ functions on sets with polynomial cusps, Math. Ann. 275 (1986), 467-480.
  • [PP2] -, Extension of $ {\mathcal{C}^\infty }$ functions from sets with polynomial cusps, Studia Math. 88 (1988), 279-287. MR 932017 (89b:58026)
  • [Pl1] W. Pleśniak, On superposition of quasianalytic functions, Ann. Polon. Math. 26 (1972), 75-86. MR 0308443 (46:7557)
  • [Pl2] -, A Cantor regular set which does not have Markov's property, Ann. Polon. Math. 51 (1990), 269-274. MR 1093998 (92c:30004)
  • [Pl3] -, Markov's inequality and the existence of an extension operator for $ {\mathcal{C}^\infty }$ functions, J. Approx. Theory 61 (1990), 106-117. MR 1047152 (91h:46065)
  • [Pl4] -, Extension and polynomial approximation of ultradifferentiable functions in $ {\mathbb{R}^n}$, Bull. Soc. Roy. Sci. Liège 63 (1994), 393-402. MR 1306101 (95j:46032)
  • [PS] W. Pleśniak and A. Skiba, Polynomial approximation and linear extension operators for Gevrey classes of functions on compact sets, Publ. Inst. Rech. Math. Av. 21, No. IV, Lille, 1990.
  • [Po] Ch. Pommerenke, On the derivative of a polynomial, Michigan Math. J. 6 (1959), 373-375. MR 0109208 (22:95)
  • [RS] Q.I. Rahman and G. Schmeisser, Les inégalités de Markoff et de Bernstein, Les Presses de l'Université de Montréal, Montreal, 1983. MR 729316 (85f:41009)
  • [S1] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357. MR 0143946 (26:1495)
  • [S2] -, Extremal plurisubharmonic functions in $ {\mathbb{C}^n}$, Ann. Polon. Math. 39 (1981), 175-211. MR 617459 (83e:32018)
  • [T] J.-C. Tougeron, Idéaux de fonctions différentiables, Springer, Berlin, Heidelberg, and New York, 1972. MR 0440598 (55:13472)
  • [Z] M. Zerner, Développement en série de polynômes orthonormaux des fonctions indéfiniment différentiables, C. R. Acad. Sci. Paris Sér. I Math. 268 (1969), 218-220. MR 0247451 (40:717)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 41A17, 32E20, 32F05

Retrieve articles in all journals with MSC: 41A17, 32E20, 32F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1301486-9
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society