Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The power substitution for rings of complex and real functions on compact metric spaces


Author: A. N. Dranishnikov
Journal: Proc. Amer. Math. Soc. 123 (1995), 2887-2893
MSC: Primary 55M10; Secondary 15A54, 16S60
DOI: https://doi.org/10.1090/S0002-9939-1995-1307512-5
MathSciNet review: 1307512
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The weak power substitution property for rings of matrices over the ring of functions on a compact metric space X is given in terms of cohomological dimension. A compactum with the ring of complex functions $ C(X)$ having the following property is constructed: the units of $ C(X)$ are not dense in $ C(X)$ and they are dense among squares.


References [Enhancements On Off] (What's this?)

  • [1] K. R. Goodearl, Power-cancellation of groups and modules, Pacific J. Math. 64 (1976), 387-411. MR 0450334 (56:8630)
  • [2] -, Cancellation of low-rank vector bundles, Pacific J. Math. 113 (1984), 289-302. MR 749537 (86a:18013)
  • [3] R. Camps and P. Menal, The power substitution property for rings of continuous functions, preprint, 1993. MR 1247366 (95a:16009)
  • [4] V. I. Kuzminov, Homological dimension theory, Russian Math. Surveys 23 (1968), 1-45. MR 0240813 (39:2158)
  • [5] A. N. Dranishnikov, Homological dimension theory, Russian Math. Surveys 43 (1988), no. 4, 11-63. MR 969565 (90e:55003)
  • [6] L. N. Vaserstein, Stable rank of rings and dimensionality of topological spaces, Funct. Anal. Appl. 5 (1971), 102-110. MR 0284476 (44:1701)
  • [7] A. N. Dranishnikov, An extension of mappings into CW-complexes, Math. USSR-Sb. 74 (1993), no. 1, 47-56. MR 1133570 (93a:55002)
  • [8] A. Dold and R. Thorn, Quasifaserungen und unedliche symmetrische Produkte, Ann. of Math. (2) 67 (1958), 239-281. MR 0097062 (20:3542)
  • [9] P. Hilton, Homotopy theory and duality, Gordon and Breach, New York, 1965. MR 0198466 (33:6624)
  • [10] D. Sullivan, Geometric topology, Part I: Localization, periodicity, and Galois symmetry, M.I.T. Press, Cambridge, MA, 1970. MR 0494074 (58:13006a)
  • [11] R. F. Williams, A useful functor and three famous examples in topology, Trans. Amer. Math. Soc. 106 (1963), 319-329. MR 0146832 (26:4352)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55M10, 15A54, 16S60

Retrieve articles in all journals with MSC: 55M10, 15A54, 16S60


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1307512-5
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society