A NOTE ON COHOMOLOGICAL DIMENSION OF APPROXIMATE MOVABLE SPACES

TADASHI WATANABE

(Communicated by James E. West)

Abstract. We show that any approximate movable compact metric space \(X \) satisfies the equality \(\dim X = \dim_{\mathbb{Z}} X \) without finite dimensional condition. Thus there is no approximate movable compact metric space \(X \) with \(\dim X = \infty \) and \(\dim_{\mathbb{Z}} X < \infty \). Since ANRs and some generalized ANRs are approximate movable, they satisfy the above equality.

All spaces are compact metric and all polyhedra are finite. Let \(X \) be a space. By \(\dim X \) and \(\dim_{\mathbb{Z}} X \) we denote covering dimension and integral cohomological dimension of \(X \), respectively. It is well known (the fundamental cohomological dimension theorem) that if \(\dim X \) is finite, then \(\dim X = \dim_{\mathbb{Z}} X \) (see P. S. Aleksandrov [1]). Recently, A. N. Dranishnikov [5] constructed a space \(X \) with \(\dim X = \infty \) and \(\dim_{\mathbb{Z}} X = 3 \). So his example means that the equality \(\dim X = \dim_{\mathbb{Z}} X \) does not hold without finite dimensional condition. In this note we investigate this equality for some nice spaces:

Theorem 1. If \(X \) is approximate movable, then \(\dim X = \dim_{\mathbb{Z}} X \) holds.

Corollary 2. There does not exist an approximate movable space \(X \) with \(\dim X = \infty \) and \(\dim_{\mathbb{Z}} X < \infty \).

In [9] the author introduced an approximate shape theory and approximate movability which is an approximate invariant property.

Let \(X \) be a space, and let \(\mathcal{P} = \{P_i, f_{ij}, N\} \) be an inverse sequence of polyhedra \(P_i \) and maps \(f_{ij}: X_j \to X_i, \; i < j \), such that \(X \) is an inverse limit of \(\mathcal{P} \). Lemma (1.6) of [9, II] means the following:

Lemma 3. \(X \) is approximate movable if and only if for each integer \(k \) and each \(\varepsilon > 0 \) there is an integer \(j > k \) with the following property: For each integer \(i \geq k \) there is a map \(r_i: X_j \to X_i \) such that \(f_{ik}r_i \) and \(f_{jk} \) are \(\varepsilon \)-near.

For our proof we need some characterizations of dimension and cohomological dimension. For any integer \(n \) and any triangulation \(K \), \(K^{(n)} \) denotes the \(n \)-th skeleton of \(K \) and \(|K| \) denotes the realization of \(K \). Lemmas 4 and 5 are Theorem 4.1 and Theorem 5.1 of [8].

Received by the editors November 15, 1993.

1991 Mathematics Subject Classification. Primary 54C55, 54C56, 54F45.

Key words and phrases. Covering dimension, cohomological dimension, ANR, generalized ANR, approximate movability.

©1995 American Mathematical Society
Lemma 4. X has $\dim X \leq n$ if and only if for each integer k and each $\varepsilon > 0$ there exist an integer $j > k$, a triangulation L_k of P_k, and a map $g_{jk}: P_j \rightarrow |L_k^{(n)}|$ which is ε-close to f_{jk}.

Lemma 5 (R. D. Edwards). X has $\dim_{\mathbb{Z}} X \leq n$ if and only if, given an integer $i \geq 1$, for each integer k and each $\varepsilon > 0$ there is a triangulation L_k of P_k and an integer $j > k$ such that for any triangulation L_j of P_j there is a map $g_{jk}: |L_j^{(n)}| \rightarrow |L_k^{(n)}|$ which is ε-close to the restriction of f_{jk}.

Proof of Theorem 1. First, we show the inequality $\dim X \leq \dim_{\mathbb{Z}} X$. If $\dim_{\mathbb{Z}} X = \infty$, there is nothing to prove, so we consider the case $\dim_{\mathbb{Z}} X \leq n < \infty$ for some integer n. Take any integer k and any $\varepsilon > 0$. Put $\delta = \varepsilon / 3$. Since X is approximate movable, by Lemma 3 there is an integer $j > k$ satisfying

(1) for each $i \geq k$ there is a map $r_i: P_j \rightarrow P_i$ such that $f_{ik}r_i$ and f_{jk} are δ-near.

Since P_j is a finite polyhedron, take a triangulation L_j of P_j and let $s = \dim L_j < \infty$. Since $\dim_{\mathbb{Z}} X \leq n < \infty$, by Lemma 5 there exist a triangulation L_k of P_k and an integer $i > k$ such that

(2) for any triangulation L_i of P_i there is a map $g_{ik}: |L_i^{(n+s)}| \rightarrow |L_k^{(n)}|$ which is δ-close to the restriction of f_{ik}.

Since $f_{ik}: X_i \rightarrow X_k$ is uniform, there is an $\eta > 0$ such that if points x and x' in X_i are η-near, then $f_{ik}(x)$ and $f_{ik}(x')$ are δ-near. Take a triangulation L_i of P_i such that any simplex of L_i has a diameter $< \eta/2$. By the simplicial approximation theorem there are a subdivision L'_j of L_j and a simplicial map $\varphi: L'_j \rightarrow L_i$ which approximates r_i, i.e., its realization $|\varphi|$ and r_i are η-near. By the choice of η, $f_{ik}|\varphi|$ and $f_{ik}r_i$ are δ-near. Since φ is simplicial and $s = \dim L_j = \dim L_j$, φ induces a map $h = |\varphi|: P_j = |L'_j| = |L_j^{(s)}| \rightarrow |L_i^{(s)}| \subset |L_i^{(n+s)}|$. Thus

(3) $f_{ik}h$ and $f_{ik}r_i$ are δ-near.

Since $h: P_j \rightarrow |L_i^{(n+s)}|$, by (2)

(4) $g_{ik}h$ and $f_{ik}h$ are δ-near.

By (1), (3) and (4), f_{jk} and $g_{ik}h: P_j \rightarrow |L_k^{(n)}|$ are ε-near. Thus j and the map $g_{ik}h$ satisfies the condition in Lemma 4 for k and ε. Then $\dim X \leq n$. This means the inequality $\dim X \leq \dim_{\mathbb{Z}} X$.

Next, we show the inequality $\dim_{\mathbb{Z}} X \leq \dim X$. If $\dim X = \infty$, there is nothing to prove, so we consider the case $\dim X \leq n < \infty$ for some integer n. It is easy to show $\dim_{\mathbb{Z}} X \leq n$ by Lemmas 4 and 5. This means the inequality $\dim_{\mathbb{Z}} X \leq \dim X$. Therefore, we have the required equality.

Corollary 2 follows from Theorem 1 and also means that Dranishnikov's example is not approximate movable.

AANR_N, AANR_C, NE-set and AP are approximate movable (see the table of [9, II, p. 337]). Thus we have

Corollary 6. If \(X \) is ANR, ANR_N, ANR_C, NE-set or AP, then \(\dim X = \dim_Z X \) holds.

REFERENCES