Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Noetherian domains with many more elements than height-one primes

Author: D. D. Anderson
Journal: Proc. Amer. Math. Soc. 123 (1995), 2971-2974
MSC: Primary 13F05; Secondary 13F07
MathSciNet review: 1264799
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Extending previous results of L. Claborn and H.W. Lenstra, Jr., we show that if D is a Krull domain with a set of height-one primes $ {X^{(1)}}$ that satisfies either (1) D contains a subset k with $ \vert k\vert > \vert{X^{(1)}}\vert$ and for $ \mu \ne \lambda \in k,\mu - \lambda $ is a unit, or (2) $ \vert D\vert > \vert{X^{(1)}}{\vert^{{\aleph _0}}}$, then D is a Euclidean domain. We also show that any Noetherian ring satisfying (1) or Noetherian domain satisfying (2) has Krull dimension at most one.

References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Commutative algebra, Hermann, Paris, and Addison-Wesley, Reading, MA, 1972. MR 0360549 (50:12997)
  • [2] L. Claborn, A generalized approximation theorem for Dedekind domains, Proc. Amer. Math. Soc. 18 (1967), 378-380. MR 0207737 (34:7552)
  • [3] D. Estes and J. Ohm, Stable range in commutative rings, J. Algebra 7 (1967), 343-362. MR 0217052 (36:147)
  • [4] R. Fossum, The divisor class group of a Krull domain, Springer-Verlag, New York, Heidelberg, and Berlin, 1973. MR 0382254 (52:3139)
  • [5] I. Kaplansky, Commutative rings, rev. ed., Univ. of Chicago Press, Chicago, 1974. MR 0345945 (49:10674)
  • [6] H.W. Lenstra, Jr., Euclid's algorithm in large Dedekind domains, J. Indian Math. Soc. 50 (1986), 41-47. MR 989013 (90c:13018)
  • [7] P. Samuel, About Euclidean rings, J. Algebra 19 (1971), 282-301. MR 0280470 (43:6190)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13F05, 13F07

Retrieve articles in all journals with MSC: 13F05, 13F07

Additional Information

Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society