Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the inequality $ \vert p(z)\vert \leq p(\vert z\vert )$ for polynomials


Author: Valerio De Angelis
Journal: Proc. Amer. Math. Soc. 123 (1995), 2999-3007
MSC: Primary 26C05; Secondary 26D05, 30C10
DOI: https://doi.org/10.1090/S0002-9939-1995-1264805-8
MathSciNet review: 1264805
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We derive a simple test to check if the inequality $ \vert p(z)\vert \leq p(\vert z\vert)$ holds for all sufficiently small or sufficiently large values of $ \vert z\vert$, where p is a Laurent polynomial in one variable with real coefficients and $ z \in \mathbb{C}$. Some examples and applications are also given.


References [Enhancements On Off] (What's this?)

  • [1] V. De Angelis, Polynomial beta functions and positivity of polynomials, Ph.D. dissertation, University of Washington, 1992.
  • [2] -, Positivity conditions for polynomials, Ergodic Theory Dynamical Systems 14 (1994), 23-51. MR 1268708 (95b:26018)
  • [3] -, Polynomial beta functions, Ergodic Theory Dynamical System 14 (1994), 453-474. MR 1293403 (96f:26018)
  • [4] D. Handelman, Positive polynomials and product type actions of compact groups, Mem. Amer. Math. Soc. 320 (1985). MR 783217 (86h:46091)
  • [5] -, Positive polynomials, convex integral polytopes, and a random walk problem, Lecture Notes in Math., vol. 1282, Springer-Verlag, Berlin and New York, 1987. MR 914972 (89b:06014)
  • [6] -, Polynomials with a positive power, Symbolic Dynamics and its Applications, Contemporary Math., vol. 135, Amer. Math. Soc., Providence, RI, 1992, pp. 229-230. MR 1185091 (93g:26023)
  • [7] -, Eventual positivity for matrices, preprint.
  • [8] B. Marcus and S. Tuncel, The weight-per-symbol polytope and scaffolds of invariants associated with Markov chains, Ergodic Theory Dynamical Systems 11 (1991), 129-180. MR 1101088 (92g:28038)
  • [9] -, Matrices of polynomials, positivity, and finite equivalence of Markov chains, J. Amer. Math. Soc. 6 (1993), 131-147. MR 1168959 (93e:28022)
  • [10] S. Tuncel, Faces of Markov chains and matrices of polynomials, Symbolic Dynamics and its Applications, Contemporary Math., vol. 135, Amer. Math. Soc., Providence, RI, 1992, pp. 391-422. MR 1185106 (94m:28034)
  • [11] A. M. Odlyzko and L. B. Richmond, On the unimodality of high convolutions of discrete distributions, Ann. Probab. 13 (1985), 299-306. MR 770644 (86m:60039)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26C05, 26D05, 30C10

Retrieve articles in all journals with MSC: 26C05, 26D05, 30C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1264805-8
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society