On the inequality for polynomials

Author:
Valerio De Angelis

Journal:
Proc. Amer. Math. Soc. **123** (1995), 2999-3007

MSC:
Primary 26C05; Secondary 26D05, 30C10

DOI:
https://doi.org/10.1090/S0002-9939-1995-1264805-8

MathSciNet review:
1264805

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We derive a simple test to check if the inequality holds for all sufficiently small or sufficiently large values of , where *p* is a Laurent polynomial in one variable with real coefficients and . Some examples and applications are also given.

**[1]**V. De Angelis,*Polynomial beta functions and positivity of polynomials*, Ph.D. dissertation, University of Washington, 1992.**[2]**-,*Positivity conditions for polynomials*, Ergodic Theory Dynamical Systems**14**(1994), 23-51. MR**1268708 (95b:26018)****[3]**-,*Polynomial beta functions*, Ergodic Theory Dynamical System**14**(1994), 453-474. MR**1293403 (96f:26018)****[4]**D. Handelman,*Positive polynomials and product type actions of compact groups*, Mem. Amer. Math. Soc.**320**(1985). MR**783217 (86h:46091)****[5]**-,*Positive polynomials, convex integral polytopes, and a random walk problem*, Lecture Notes in Math., vol. 1282, Springer-Verlag, Berlin and New York, 1987. MR**914972 (89b:06014)****[6]**-,*Polynomials with a positive power*, Symbolic Dynamics and its Applications, Contemporary Math., vol. 135, Amer. Math. Soc., Providence, RI, 1992, pp. 229-230. MR**1185091 (93g:26023)****[7]**-,*Eventual positivity for matrices*, preprint.**[8]**B. Marcus and S. Tuncel,*The weight-per-symbol polytope and scaffolds of invariants associated with Markov chains*, Ergodic Theory Dynamical Systems**11**(1991), 129-180. MR**1101088 (92g:28038)****[9]**-,*Matrices of polynomials, positivity, and finite equivalence of Markov chains*, J. Amer. Math. Soc.**6**(1993), 131-147. MR**1168959 (93e:28022)****[10]**S. Tuncel,*Faces of Markov chains and matrices of polynomials*, Symbolic Dynamics and its Applications, Contemporary Math., vol. 135, Amer. Math. Soc., Providence, RI, 1992, pp. 391-422. MR**1185106 (94m:28034)****[11]**A. M. Odlyzko and L. B. Richmond,*On the unimodality of high convolutions of discrete distributions*, Ann. Probab.**13**(1985), 299-306. MR**770644 (86m:60039)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
26C05,
26D05,
30C10

Retrieve articles in all journals with MSC: 26C05, 26D05, 30C10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1264805-8

Article copyright:
© Copyright 1995
American Mathematical Society