ON A RECTANGLE INCLUSION PROBLEM

JANUSZ PAWLIKOWSKI

(Communicated by Andreas R. Blass)

Abstract. We show that if every set of reals of size 2^{\aleph_0} contains a meager-to-one continuous image of a set that cannot be covered by less than 2^{\aleph_0} meager sets, then there exists a null (Lebesgue measure zero) subset of the plane $\mathbb{R} \times \mathbb{R}$ that meets every nonnull rectangle $X \times Y$. The antecedent is satisfied, e.g., if ω_2 Cohen reals are added to a model of the continuum hypothesis.

Martin's Axiom implies that a conull (i.e., with null complement) subset of the Euclidean plane $\mathbb{R} \times \mathbb{R}$ contains a nonnull rectangle $X \times Y$. Fremlin [5], Problem AS (see also [6], 3K), asked if this is true in ZFC.

It is known that there exists a conull subset of $\mathbb{R} \times \mathbb{R}$ which contains no rectangle $X \times Y$ with one side nonnull and the other measurable and nonnull. Namely, let $E = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x + y \in F\}$, where $F = \mathbb{R} \setminus \mathbb{Q}$. Clearly, E is a conull subset of $\mathbb{R} \times \mathbb{R}$. If $X \times Y \subseteq E$, then $X + Y \subseteq F$. But, by a theorem of Steinhaus (see [9]), if X is measurable nonnull and Y is nonnull, then $X + Y$ has nonempty interior; hence $X + Y$ cannot be contained in F.

(However, Brodskij and Eggleston (see [4]) showed that a measurable nonnull subset of $\mathbb{R} \times \mathbb{R}$ always contains a rectangle $X \times Y$ with X perfect and Y measurable nonnull.)

Consider the following proposition.

(+) If an F^σ subset of $\mathbb{R} \times \mathbb{R}$ contains a nonnull rectangle $X \times Y$, then it contains a measurable nonnull rectangle $A \times B$.

Proposition (+) implies that there exists a conull subset of $\mathbb{R} \times \mathbb{R}$ which contains no nonnull rectangle. Any conull F^σ subset of the set E considered above will do.

Proposition (+) has other interesting consequences (see [1]). For instance, it follows from (+) that if X and Y are nonnull subsets of \mathbb{R}, then $X + Y$ is nonmeager, hence every meager subgroup of \mathbb{R} is null. If $X + Y$ is covered by an F^σ set F, then $F^* = \{(x, y) : x + y \in F\}$ is an F^σ cover for $X \times Y$. By (+), F^* contains a closed nonnull rectangle $A \times B$. By the theorem of Steinhaus mentioned above, $A + B$ has nonempty interior. Hence, F has nonempty interior.)
Consistency of (+) was shown independently by Friedman and Shelah (see [1] and [2]). The model used was ω_2 Cohen reals over a model of the continuum hypothesis.

In this paper we show that (+) is implied by a combinatorial condition whose consistency has been known for some time.

Denote by $\mathcal{P}(\mathbb{R})$ the family of all subsets of \mathbb{R}. Let λ be a cardinal number. For $\mathcal{A} \subseteq \mathcal{P}(\mathbb{R})$ and $X \subseteq \mathbb{R}$ write $X \in \mathcal{A}^+$ if X can be covered by less than λ sets from \mathcal{A}, otherwise write $X \in \mathcal{A}^+$. Write also $X \in \mathcal{A}^+$ if $X \in \mathcal{A}^+_\lambda$.

Let \mathcal{M} be the σ-ideal of meager subsets of \mathbb{R}. Say that a function is meager-to-one if preimages of points are meager.

For $D \subseteq \mathbb{R} \times \mathbb{R}$ and $y \in \mathbb{R}$ let D^y denote the horizontal section of D determined by y, i.e., $D^y = \{ x \in \mathbb{R} : (x, y) \in D \}$.

Consider the following condition.

\[(*) \lambda: \text{Every set of reals of size } \lambda \text{ contains a meager-to-one continuous image of a set from } \mathcal{M}^+ \lambda. \]

Note that we do not weaken $(*)_\lambda$ if we replace 'continuous' by 'Baire measurable'. This is because Baire measurable functions are continuous on comeager sets (see [9]).

It is folklore that $(*)_{2^{\aleph_0}}$ holds if ω_2 Cohen reals are added to a model of the continuum hypothesis. For example, Miller [8], p. 577, showed that in this model every set of reals of size 2^{\aleph_0} contains a one-to-one continuous image of a $(2^{\aleph_0}, \aleph_1)$-Lusin set. ($X \subseteq \mathbb{R}$ is a (λ, κ)-Lusin set if $|X| = \lambda$ and $|X \cap S| < \kappa$ for all meager S.) This immediately gives $(*)_{2^{\aleph_0}}$.

We prove:

Theorem. $(*)_{2^{\aleph_0}} \Rightarrow (+)$.

Theorem is a consequence of the following Lemma.

Lemma. Assume $(*)_{2^{\aleph_0}}$. Then, with every nonnull set $X \subseteq \mathbb{R}$ we can associate a family $\{E_n : n < \omega\}$ of closed nonnull subsets of \mathbb{R} such that if $X \subseteq \bigcup_{m < \omega} D_m$, $D_m \subseteq \mathbb{R}$ closed sets, then for some m and n, $E_n \subseteq D_m$.

Proof of the Theorem. Suppose that $X \times Y \subseteq \mathbb{R} \times \mathbb{R}$ is a nonnull rectangle covered by $\bigcup_{m < \omega} E_n$ where $F_m \subseteq \mathbb{R} \times \mathbb{R}$ is closed. Clearly X and Y are nonnull. Let the E_n's be as in the Lemma. Let $G_{nm} = \{ y : E_n \subseteq (F_m)^y \}$. Then $E_n \times G_{nm} \subseteq F_m$. Each G_{nm} is closed. By the Lemma, the G_{nm}'s cover Y. Indeed, let $y \in Y$. We have $X \times \{ y \} \subseteq \bigcup_m F_m$. So, $X \subseteq \bigcup_m (F_m)^y$; hence, by the Lemma, some $(F_m)^y$ contains some E_n, i.e., $y \in G_{nm}$.

Since Y is nonnull, it follows that some G_{nm} is nonnull. Thus, we can take $E_n \times G_{nm}$ as our measurable nonnull rectangle, which is contained in F_m. □

Proof of the Lemma. Assume $(*)_{2^{\aleph_0}}$. Fix a nonnull set $X \subseteq \mathbb{R}$.

Claim. There is $Y \in \mathcal{M}^+_{2^{\aleph_0}}$ and a meager-to-one continuous function $f : Y \rightarrow X$ such that for each closed nonnull set W, $f^{-1}[W] \in \mathcal{M}^+_{2^{\aleph_0}}$.

Proof. Let $\{E_\xi : \xi < 2^{\aleph_0}\}$ be an enumeration of all closed null sets. Pick inductively $x_\xi \in X \setminus (\{x_\xi : \xi < \xi\} \cup \bigcup_{\xi < \xi} E_\xi)$ ($\xi < 2^{\aleph_0}$). This is possible because X is not null and $\{x_\xi : \xi < \xi\} \cup \bigcup_{\xi < \xi} E_\xi$ is null. (By $(*)_{2^{\aleph_0}}$, $\mathbb{R} \in \mathcal{M}^+_{2^{\aleph_0}}$; by [7], Thm. 2.1, this implies that a union of less than 2^{\aleph_0} closed null sets is...
null.) By the construction, the \(x_\xi \)'s are distinct and for every closed null set \(W, |W \cap \{ x_\xi : \xi < 2^{\omega_0} \}| < 2^{\omega_0}. \)

By (*)2\(\omega_0 \) there is \(Y \in 2^{\omega_0} \) and a meager-to-one continuous function \(f : Y \mapsto \{ x_\xi : \xi < 2^{\omega_0} \}. \) Clearly \(f^{-1}[W \cap X] \in 2^{\omega_0}, \) for each closed null \(W. \)

Let \(\mathcal{U} \) be a countable base for \(\mathbb{R}. \) Let \(\{ U_n : n < \omega \} \) be an enumeration of all \(U \in \mathcal{U} \) with the property that \(f(U \cap Y) \) is not null. Let \(E_n = f[U_n \cap Y] \) \((n < \omega).\)

To see that this works suppose that \(X \subseteq \bigcup_{m<\omega} D_m, D_m \subseteq \mathbb{R} \) closed sets. Then \(f^{-1}[D_m \cap X]'s \) are relatively closed in \(Y \) sets that cover \(Y. \)

Suppose that for each \(m \) and \(U \in \mathcal{U} \) with \(U \cap Y \subseteq f^{-1}[D_m \cap X], \) \(f[U \cap Y] \) is null. Then, by the claim, \(U \cap Y \in 2^{\omega_0} \). It follows that \(Y \) is a union of countably many sets from \(2^{\omega_0} \) and countably many nowheredense sets. Hence \(Y \subseteq 2^{\omega_0}, \) which is a contradiction.

Thus, for some \(U \in \mathcal{U} \) with \(U \cap Y \subseteq f^{-1}[D_m \cap X], \) \(f[U \cap Y] \) is not null, so it must be one of the \(E_n \)'s. Clearly, \(f[U \cap Y] \subseteq D_m. \)

We shall now generalize the Lemma and the Theorem. Fix cardinals \(\lambda \leq \lambda < 2^{\omega_0}, \) \(c(\kappa) > \omega, \) and an arbitrary family \(\mathcal{F} \subseteq 2^\mathbb{R} \) of closed sets. Note that \(\mathcal{F}^{\omega_1} \) is a \(\sigma \)-ideal.

Definition. Let \(X \subseteq \mathbb{R}. \) Say that a family \(\{ F_n : n < \omega \} \) of closed sets is \(\kappa \)-dense (for \(\mathcal{X} \)) if, whenever \(X \) is covered by less than \(\kappa \) closed sets, then some one of these closed sets covers some \(F_n. \) Say \(\sigma \)-dense for \(\kappa\) dense.

Note. Let \(\mathcal{F} \subseteq 2^\mathbb{R} \) be a \(\sigma \)-ideal. Every closed set from \(\mathcal{F}^{\omega_1} \) (so also every superset of such a set) has a \(\sigma \)-dense family contained in \(\mathcal{F}^{\omega_1}. \) Indeed, suppose that \(X \in \mathcal{F}^{\omega_1} \) is closed. Let \(\mathcal{U} \) be a countable base for \(\mathbb{R}. \) Let \(X^* = X \setminus \bigcup\{ U \in \mathcal{U} : U \cap X \in \mathcal{F} \}. \) Then \(X^* \) is closed and each \(U \cap X^* \) \((U \in \mathcal{U})\) is either empty or belongs to \(\mathcal{F}^{\omega_1}. \) As a \(\sigma \)-dense family we can just take the collection of those sets \(U \cap X^* \) \((U \in \mathcal{U})\) which belong to \(\mathcal{F}^{\omega_1}. \) If \(X^* \subseteq \bigcup_{m<\omega} D_m, D_m \subseteq \mathbb{R} \) closed, then for some \(m, X^* \cap D_m \) has nonempty interior relatively to \(X^* \) (Baire's category theorem). So, for some \(U \in \mathcal{U}, U \cap X^* \neq \emptyset \) and \(U \cap X^* \subseteq D_m. \) Then \(U \cap X^* \subseteq D_m, \) and, by the definition of \(X^* \), \(U \cap X^* \in \mathcal{F}^{\omega_1}. \)

It also follows that if \(X \) is arbitrary and we can find a family of closed sets \(\{ F_n : n < \omega \} \subseteq \mathcal{F}^{\omega_1} \) such that every \(F_\sigma \) set covering \(X \) contains some \(F_n, \) then \(X \) has a \(\sigma \)-dense family contained in \(\mathcal{F}^{\omega_1}. \)

Lemma 1. Let \(\{ F_n : n < \omega \} \) be a \(\kappa \)-dense family for \(X. \) Suppose that \(X \times Y \subseteq \bigcup_{\xi<\mu} D_\xi, \) where \(\mu < \kappa \) and \(D_\xi \subseteq \mathbb{R} \times \mathbb{R} \) \((\xi < \mu)\) are closed. Then there are \(Y_{n\xi} \subseteq Y \) \((n < \omega, \xi < \mu)\) such that \(\bigcup_{n,\xi} Y_{n\xi} = Y \) and for all \(n \) and \(\xi, \) \(F_n \times Y_{n\xi} \subseteq D_\xi. \)

Proof. Let \(Y_{n\xi} = \{ y \in Y : F_n \subseteq (D_\xi)^y \}. \) Then \(F_n \times Y_{n\xi} \subseteq D_\xi. \) Also, given \(y \in Y, (D_\xi)^y \) \((\xi < \mu)\) cover \(X. \) So, by the definition of a dense family, some \(F_n \) is contained in some \((D_\xi)^y, \) i.e., \(y \in Y_{n\xi}. \)

Corollary. Let \(\mathcal{F} \subseteq 2^\mathbb{R} \) be arbitrary. Let \(\mu < \kappa, \) and let \(D_\xi \subseteq \mathbb{R} \times \mathbb{R} \) \((\xi < \mu)\) be closed. Suppose that \(X \times Y \subseteq \bigcup_{\xi} D_\xi, \) where \(Y \in \mathcal{F}^{\omega_1} \) and \(X \) has a \(\kappa \)-dense
family contained in \mathcal{F}_k^+. Then there exist closed sets $A \in \mathcal{F}_k^+$ and $B \in \mathcal{F}_k^+$ such that $A \times B \subseteq D_\xi$ for some ξ.

Proof. Let $\{F_n : n < \omega\} \subseteq \mathcal{F}_k^+$ be κ-dense for X. If in Lemma 1, $Y \in \mathcal{F}_k^+$, then some $Y_{n_\xi} \in \mathcal{F}_k^+$. Set $A = F_n$ and $B = \overline{Y_{n_\xi}}$.

Definition. Let $\tilde{\mathcal{F}}_k$ be the collection of sets $X \subseteq \bigcup \mathcal{F}$ with the property that for any continuous function $f : Y \to X$, $Y \subseteq \mathbb{R}$, there is $W \in \mathcal{F}_k$ with $Y \setminus f^{-1}[W] \in \mathcal{M}_k$. Note that $\tilde{\mathcal{F}}_k$ is a σ-ideal, which extends \mathcal{M}_k.

Lemma 2. If $X \notin \tilde{\mathcal{F}}_k$, then X has a κ-dense family contained in \mathcal{F}_k^+.

Proof. Suppose $X \notin \tilde{\mathcal{F}}_k$. If $X \subseteq \bigcup \mathcal{F}$, then $\{x\}$ for any $x \in X \setminus \bigcup \mathcal{F}$ is a κ-dense family. So, let $X \subseteq \bigcup \mathcal{F}$ and let $f : Y \to X$ ($Y \subseteq \mathbb{R}$) be a continuous function such that $\forall W \in \mathcal{F}_k$ $Y \setminus f^{-1}[W] \in \mathcal{M}_k$. Let \mathcal{U} be a countable base for \mathbb{R}. Let $V = \bigcup\{U \in \mathcal{U} : f(U \cap Y) \in \mathcal{F}_k\}$. Then $f[V \cap Y] \in \mathcal{F}_k$, so, by our assumption, $Y \setminus V \in \mathcal{M}_k^+$.

As a κ-dense family we take $\{f[U \cap Y] : U \in \mathcal{U} \text{ and } f[U \cap Y] \in \mathcal{F}_k^+\}$. To see that this works let $\mu < \kappa$ and suppose that X is covered by closed sets $D_\xi \subseteq \mathbb{R}$ ($\xi < \mu$). Then the sets $f^{-1}[D_\xi] \cap Y$ cover Y and are relatively closed in Y. If ξ is such that for every $U \in \mathcal{U}$ with $U \cap Y \subseteq f^{-1}[D_\xi]$, $f[U \cap Y] \in \mathcal{F}_k$, then $f^{-1}[D_\xi] \cap Y \setminus V$ is nowhere dense. Since $Y \setminus V \in \mathcal{M}_k^+$, this cannot happen to every ξ. Thus, we can find ξ and U with $f[U \cap Y] \notin \mathcal{F}_k$. Clearly $f[U \cap Y] \subseteq D_\xi$. \[\Box\]

Definition. Say that a sequence $(F_\xi : \xi < \lambda) \subseteq \mathcal{F}$ is λ-cofinal in \mathcal{F} if $\forall F \in \mathcal{F}_k$ $\exists \xi < \lambda F \subseteq \bigcup_{\xi < \xi} F_\xi$.

Lemma 3. Assume $(*)_\lambda$. If \mathcal{F} has a λ-cofinal sequence of length λ, then $\tilde{\mathcal{F}}_k \subseteq \mathcal{F}_k$.

Proof. Fix $X \in \mathcal{F}_k^+$, $X \subseteq \bigcup \mathcal{F}$. Let $(F_\xi : \xi < \lambda) \subseteq \mathcal{F}$ be a λ-cofinal sequence. Pick inductively $x_\xi \in X \setminus (\{x_\xi : \xi < \lambda\} \cup \bigcup_{\xi < \xi} F_\xi)$ ($\xi < \lambda$). This is possible because $X \in \mathcal{F}_k^+$ and $X \subseteq \bigcup \mathcal{F}$. By the construction, x_ξ's are distinct. Also, for every $W \in \mathcal{F}_k$ there is $\xi < \lambda$ with $W \subseteq \bigcup_{\xi < \xi} F_\xi$. Hence $|W \cap \{x_\xi : \xi < \lambda\}| < \lambda$.

By $(*)_\lambda$ there is $Y \in \mathcal{M}_k^+$ and a meager-to-one continuous function $f : Y \to \{x_\xi : \xi < \lambda\}$. Note that for every $W \in \mathcal{F}_k$, $f^{-1}[W \cap X] \in \mathcal{M}_k$. Since $Y \in \mathcal{M}_k^+$ and $\kappa \leq \lambda$, we have that $Y \setminus f^{-1}[W \cap X] \notin \mathcal{M}_k$. Thus f witnesses that $X \notin \tilde{\mathcal{F}}_k$. \[\Box\]

Corollary. Assume $(*)_\lambda$. If \mathcal{F} has a λ-cofinal sequence of length λ, then each $X \in \mathcal{F}_k^+$ has a κ-dense family contained in \mathcal{F}_k^+.

Proof. By Lemmas 2 and 3. \[\Box\]

Combining the corollaries of Lemmas 1 and 3 we get the following.

Proposition 1. Let $\kappa \leq \lambda \leq 2^{\aleph_0}$ be cardinals, $\text{cf}(\kappa) > \omega$. Assume $(*)_\lambda$. Let $\mathcal{F} \subseteq \mathcal{P}(\mathbb{R})$ be arbitrary, and let $\mathcal{F} \subseteq \mathcal{P}(\mathbb{R})$ be a family of closed sets which has a κ-cofinal sequence of length λ. Let $\mu < \kappa$ and suppose that $X \times Y \subseteq \bigcup_{\xi} D_\xi$, where $D_\xi \subseteq \mathbb{R} \times \mathbb{R}$ ($\xi < \mu$) are closed and $X \in \mathcal{F}_k^+$ and $Y \in \mathcal{F}_k^+$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Then there are closed sets $A \in \mathcal{F}_k^+$ and $B \in \mathcal{F}_k^+$ such that $A \times B \subseteq D_\xi$ for some ξ.

To make it more transparent that Proposition 1 generalizes the Theorem recall the following notation (see [3]). Let $\mathcal{F} \subseteq \mathcal{P}(\mathbb{R})$ be such that $\bigcup \mathcal{F} = \mathbb{R} \notin \mathcal{F}$.

$$
\begin{align*}
\text{cof}(\mathcal{F}) &= \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{F}, \forall B \in \mathcal{F} \exists A \in \mathcal{A} B \subseteq A\}; \\
\text{cov}(\mathcal{F}) &= \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{F}, \bigcup \mathcal{A} = \mathbb{R}\}; \\
\text{add}(\mathcal{F}) &= \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{F}, \bigcup \mathcal{A} \notin \mathcal{F}\}.
\end{align*}
$$

It is folklore that add(\mathcal{F}) \leq \text{cov}(\mathcal{F}) \leq \text{cof}(\mathcal{F})$ and add(\mathcal{F}) \leq \text{cf}(\text{cof}(\mathcal{F})).

Let now \mathcal{F} be the family of all closed null subsets of \mathbb{R}, and \mathcal{N} the σ-ideal of null subsets of \mathbb{R}.

Lemma 4.

(a) $\text{cov}(\mathcal{M}) \leq \text{cof}(\mathcal{M})$ and $(*)_\lambda \Rightarrow \lambda \leq \text{cov}(\mathcal{M})$ (so $(*)_{\text{cof}(\mathcal{M})} \Rightarrow \text{cov}(\mathcal{M}) = \text{cof}(\mathcal{M})$);

(b) $\mathcal{F}_{\text{cov}(\mathcal{M})} \subseteq \mathcal{N}$;

(c) $\text{cof}(\mathcal{F}) \leq \text{cof}(\mathcal{M})$;

(d) $\text{add}(\mathcal{N})$ is a regular cardinal such that $\mathcal{N}_{\text{add}(\mathcal{N})} \subseteq \mathcal{N}$ and $\aleph_0 < \text{add}(\mathcal{N}) \leq \text{add}(\mathcal{M}) \leq \text{cf}(\text{cof}(\mathcal{M})) \leq \text{cof}(\mathcal{M})$.

Proof. (a) is trivial; (d) is well known from Cichoń's diagram (see [3]); (b) is a version of Thm. 2.1 of [7]. We sketch a proof of (c), which is a folklore heir to Thm. 2.1 of [7].

Let $\lambda = \text{cof}(\mathcal{M})$. There exist dominating and diagonalizing families of size λ, i.e., $\{f_\xi : \xi < \lambda\} \subseteq \omega^\omega$ and $\{g_\eta : \eta < \lambda\} \subseteq \omega^\omega$ such that

$$
\begin{align*}
&\forall e \in \omega^\omega \exists \xi \forall n e(n) < f_\xi(n); \\
&\forall h \in \omega^\omega \exists \eta \forall n \exists m > n h(m) = g_\eta(m)
\end{align*}
$$

(this is because $\omega \leq \text{cof}(\mathcal{M})$ and $\text{non}(\mathcal{M}) \leq \text{cof}(\mathcal{M})$ in Cichoń’s diagram; see [3]). We can assume without loss of generality that $\forall \xi \forall n f_\xi(n) > n$.

Let $\langle I^n_i : i < \omega \rangle$ be an enumeration of all finite unions of closed intervals with rational endpoints with measure $\leq 2^{-n}$. Then the sets

$$
F^\eta_\zeta = \bigcap_n \bigcup \{I^n_m(0) : f^\eta_\zeta(0) \leq m < f^{n+1}_\zeta(0)\}
$$

are closed null and every closed null set is covered by some F^η_ζ (here, $f^\eta_\zeta = f_\xi \circ f_\xi \circ \cdots \circ f_\xi$, n times).

Indeed, suppose that F is closed null. Then there is $h \in \omega^\omega$ such that $F \subseteq \bigcap_n I^n_{h(m)}$. Let η be such that $\forall n \exists m > n h(m) = g_\eta(m)$. Define $e \in \omega^\omega$ by $e(n) = \min\{m \geq n : h(m) = g_\eta(m)\}$. Let ζ be such that $\forall n e(n) < f_\zeta(n)$. Then $\forall n e(f^\eta_\zeta(0)) < f^{n+1}_\zeta(0)$, so $\forall n \exists m \in [f^\eta_\zeta(0), f^{n+1}_\zeta(0)) h(m) = g_\eta(m)$. It follows that $\bigcap_n I^n_{h(m)} \subseteq F^\eta_\zeta$. \square

From Proposition 1 we get the following.

Proposition 2. Assume $(*)_{\text{cof}(\mathcal{M})}$. If less than $\text{add}(\mathcal{N})$ closed subsets of $\mathbb{R} \times \mathbb{R}$ cover a nonnull rectangle $X \times Y$, then some of them cover a closed nonnull rectangle $A \times B$.
Proof. Use Lemma 4. Let $\lambda = \text{cof}(\mathcal{M})$, $\kappa = \text{add}(\mathcal{N})$. By (d), $\aleph_0 < \text{cf}(\kappa)$ and $\kappa \leq \lambda$. By (a), $\lambda = \text{cov}(\mathcal{M})$. So, by (b), $X \in \mathcal{F}_k^+$; and by $\mathcal{M}_\kappa \subseteq \mathcal{N}$, $Y \in \mathcal{N}_\kappa^+$. Also by (c) and $\kappa \leq \text{cf}(\lambda)$, \mathcal{F} has a κ-cofinal sequence of length λ. Now use Proposition 1 for $\mathcal{F} = \mathcal{N}$. \square

Note that by Lemma 4(a), $(*)_{2^{\aleph_0}} \Rightarrow \text{cov}(\mathcal{M}) = \text{cof}(\mathcal{M}) = 2^{\aleph_0}$. So, Proposition 2 directly generalizes the Theorem.

We conclude the paper with the following variant of Proposition 2.

Proposition 3. Assume $(*)_{\text{cof}(\mathcal{M})}$. Suppose that a coanalytic set $C \subseteq \mathbb{R} \times \mathbb{R}$, whose all horizontal sections are unions of less than $\text{cf}(\text{cof}(\mathcal{M}))$ closed sets, contains a nonnull rectangle $X \times Y$. Then it contains a closed nonnull rectangle $A \times B$.

Proof. Let $\lambda = \text{cof}(\mathcal{M})$, $\kappa = \text{cf}(\lambda)$. As in the proof of Proposition 2 we get that $X \in \mathcal{F}_k^+$ and that there is a κ-cofinal sequence for \mathcal{F} of length λ. So, by the corollary to Lemma 3, X has a κ-dense family $\{F_n : n < \omega\} \subseteq \mathcal{F}_k^+$.

Let $G_n = \{y : F_n \subseteq C^y\}$. Note that G_n's are analytic. Also, they cover Y (C^y is a union of less than κ closed sets, so, by κ-density, C^y contains some F_n). As Y is nonnull, some G_n is nonnull and, hence, being measurable, contains a closed nonnull subset. Since F_n is also closed nonnull and $F_n \times G_n \subseteq C$, we are done. \square

Note. Our rectangles had sides parallel to the coordinate axes. What if we consider arbitrary rectangles. The sets E and F discussed at the beginning of the paper have a stronger property than stated. Namely, if E contains a rectangle R with one side nonnull and the other measurable and nonnull, then one of the sides must be parallel to the line $y = -x$. Indeed, otherwise R is obtained by a rotation by an angle α, $0 \leq \alpha < \pi/4$, of a rectangle $X \times Y$. So, $R = \{(x^*, y^*) : x \in X, y \in Y\}$, where $x^* = x \cos \alpha - y \sin \alpha$ and $y^* = x \sin \alpha + y \cos \alpha$. From $R \subseteq E$ we get that for all $x \in X$ and $y \in Y$, $x^* + y^* \in F$, i.e., $x(\cos \alpha + \sin \alpha) + y(\cos \alpha - \sin \alpha) \in F$. Thus, $a \cdot X + b \cdot Y \subseteq F$ for some nonzero a and b. As before, if one of X, Y is nonnull and the other is measurable and nonnull, we get a contradiction.

Now let E' be a rotation of E by an angle β, $0 < \beta < \pi$. Then $E \cap E'$ is a connul subset of the Euclidean plane, which contains no rectangle with one side nonnull and the other measurable and nonnull. Thus, from the following weaker version of $(+)$:

$(+')$ if an F_σ subset of $\mathbb{R} \times \mathbb{R}$ contains a nonnull rectangle, then it contains a measurable nonnull rectangle;

we can construct a connul subset of the plane which contains no nonnull rectangle.

References

Department of Mathematics, University of Wroclaw, pl. Grunwaldzki 2/4, 50-156 Wroclaw, Poland
E-mail address: pawlikow@math.uni.wroc.pl