The dimension subalgebra problem for enveloping algebras of Lie superalgebras
Author:
David M. Riley
Journal:
Proc. Amer. Math. Soc. 123 (1995), 29752980
MSC:
Primary 17B35; Secondary 16S30
MathSciNet review:
1264829
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let L be an arbitrary Lie superalgebra over a field of characteristic different from 2. Denote by the ideal generated by L in its universal enveloping algebra . It is shown that for each , where is the nth term of the lower central series of L. We also prove that is a residually nilpotent ideal if and only if L is residually nilpotent. Both these results remain true in characteristic 2 provided we take L to be an ordinary Lie algebra.
 [BP]
Jeffrey
Bergen and D.
S. Passman, Delta methods in enveloping algebras
of Lie superalgebras, Trans. Amer. Math.
Soc. 334 (1992), no. 1, 259–280. MR 1076611
(93a:17008), http://dx.doi.org/10.1090/S0002994719921076611X
 [H]
B.
Hartley, The residual nilpotence of wreath products, Proc.
London Math. Soc. (3) 20 (1970), 365–392. MR 0258966
(41 #3611)
 [J]
S.
A. Jennings, The group ring of a class of infinite nilpotent
groups, Canad. J. Math. 7 (1955), 169–187. MR 0068540
(16,899a)
 [K]
M.A.
Knus, On the enveloping algebra and the descending central series
of a Lie algebra, J. Algebra 12 (1969),
335–338. MR 0238914
(39 #274)
 [L1]
Michel
Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann.
Sci. Ecole Norm. Sup. (3) 71 (1954), 101–190
(French). MR
0088496 (19,529b)
 [L2]
Michel
Lazard, Groupes analytiques 𝑝adiques, Inst. Hautes
Études Sci. Publ. Math. 26 (1965), 389–603
(French). MR
0209286 (35 #188)
 [Mc]
J.
C. McConnell, The intersection theorem for a class of
noncommutative rings, Proc. London Math. Soc. (3) 17
(1967), 487–498. MR 0210738
(35 #1624)
 [Q]
Daniel
G. Quillen, On the associated graded ring of a group ring, J.
Algebra 10 (1968), 411–418. MR 0231919
(38 #245)
 [R]
D.
M. Riley, The number of generators of ideals in graded group
algebras and 𝑝adic analytic pro𝑝 groups of dimension
one, Arch. Math. (Basel) 63 (1994), no. 5,
402–406. MR 1300733
(96c:20056), http://dx.doi.org/10.1007/BF01196668
 [RS]
D.
M. Riley and A.
Shalev, Restricted Lie algebras and their envelopes, Canad. J.
Math. 47 (1995), no. 1, 146–164. MR 1319694
(96e:16031), http://dx.doi.org/10.4153/CJM19950087
 [Ri]
E.
Rips, On the fourth integer dimension subgroup, Israel J.
Math. 12 (1972), 342–346. MR 0314988
(47 #3537)
 [S]
Manfred
Scheunert, The theory of Lie superalgebras, Lecture Notes in
Mathematics, vol. 716, Springer, Berlin, 1979. An introduction. MR 537441
(80i:17005)
 [BP]
 J. Bergen and D. S. Passman, Delta methods in enveloping algebras of Lie superalgebras, Trans. Amer. Math. Soc. 334 (1992), 259280. MR 1076611 (93a:17008)
 [H]
 B. Hartley, The residual nilpotence of wreath products, Proc. London Math. Soc. 2 (1970), 365392. MR 0258966 (41:3611)
 [J]
 S. A. Jennings, The group ring of a class of infinite nilpotent groups, Canad. J. Math. 7 (1955), 169187. MR 0068540 (16:899a)
 [K]
 M. A. Knus, On the enveloping algebra and the descending central series of a Lie algebra, J. Algebra 12 (1969), 335338. MR 0238914 (39:274)
 [L1]
 M. Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. École Norm. Sup. 71 (1954), 101190. MR 0088496 (19:529b)
 [L2]
 , Groupes analytiques padiques, Inst. Hautes Études Sci. Publ. Math. 26 (1965). MR 0209286 (35:188)
 [Mc]
 J. C. McConnell, The intersection theorem for a class of noncommutative rings, Proc. London Math. Soc. 17 (1967), 487498. MR 0210738 (35:1624)
 [Q]
 D. G. Quillen, On the associated graded ring of a group ring, J. Algebra 10 (1968), 411418. MR 0231919 (38:245)
 [R]
 D. M. Riley, Numbers of generators of ideals in graded group rings and padic analytic prop groups of dimension one, Arch. Math. 63 (1994), 402406. MR 1300733 (96c:20056)
 [RS]
 D. M. Riley and A. Shalev, Restricted Lie algebras and their envelopes, Canad. J. Math. (to appear). MR 1319694 (96e:16031)
 [Ri]
 E. Rips, On the fourth integral dimension subgroup, Israel J. Math. 12 (1972), 342346. MR 0314988 (47:3537)
 [S]
 M. Scheunert, The theory of Lie superalgebras, Lecture Notes in Math., vol. 716, SpringerVerlag, Berlin, 1979. MR 537441 (80i:17005)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
17B35,
16S30
Retrieve articles in all journals
with MSC:
17B35,
16S30
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199512648290
PII:
S 00029939(1995)12648290
Article copyright:
© Copyright 1995
American Mathematical Society
