Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Transference of maximal multipliers on Hardy spaces

Authors: Da Shan Fan and Zhi Jian Wu
Journal: Proc. Amer. Math. Soc. 123 (1995), 3169-3174
MSC: Primary 42B30; Secondary 46E10
MathSciNet review: 1273491
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Based on the atomic decomposition of the Hardy space, we give a simple proof for a theorem of Liu and Lu (Studia Math. 105 (1993), 121-134), which discusses the relation between the maximal operators on $ {\mathbb{R}^n}$ and on $ {\mathbb{T}^n}$. More significantly, our proof shows that condition (1) in Liu and Lu's Theorem 1 is superfluous.

References [Enhancements On Off] (What's this?)

  • [BF] B. Blank and D. Fan, S-function, $ {g_\lambda }$-functions and the Riesz potentials (submitted).
  • [F] D. Fan, Multipliers on certain function spaces, Rend. Circ. Mat. Palermo (2) 43 (1994). MR 1344882 (96g:42007)
  • [FS] C. Fefferman and E. M. Stein, $ {H^p}$ space of several variables, Acta Math. (1972), 137-193. MR 0447953 (56:6263)
  • [FoS] G. Folland and E. M. Stein, Hardy spaces on homogeneous groups, Princeton Univ. Press, Princeton, NJ, 1982. MR 657581 (84h:43027)
  • [KT] C. Kenig and P. Tomas, Maximal operators defined by Fourier multiplier, Studia Math. 68 (1980), 79-83. MR 583403 (82c:42016)
  • [LL] Z. Liu and S. Lu, Transference and restriction of maximal multiplier operators on Hardy spaces, Studia Math. 105 (1993), 121-134. MR 1226622 (94g:42022)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B30, 46E10

Retrieve articles in all journals with MSC: 42B30, 46E10

Additional Information

Keywords: Maximal operator, Hardy spaces, atomic decomposition
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society