THE BOREL CLASSES
OF MAHLER'S A, S, T, AND U NUMBERS

HASEO KI

(Communicated by Andreas R. Blass)

Abstract. In this article we examine the A, S, T, and U sets of Mahler's classification from a descriptive set theoretic point of view. We calculate the possible locations of these sets in the Borel hierarchy. A turns out to be Σ^0_2-complete, while U provides a rare example of a natural Σ^0_2-complete set. We produce an upperbound of Σ^0_2 for S and show that T is Π^0_3 but not Σ^0_2. Our main result is based on a deep theorem of Schmidt that allows us to guarantee the existence of the T numbers.

Introduction

Mahler [6] divided complex numbers into classes A, S, T, and U according to their properties of approximation by algebraic numbers. Some studies were done on the structural properties of these sets. For example, Kasch and Volkmann [3] verified that the T numbers have Hausdorff dimension zero. Also in harmonic analysis, W. Morgan, C. E. M. Pearce, and A. D. Pollington [7] have shown that the set of T and U numbers supports a measure whose Fourier transform vanishes at infinity. In the present paper we study the A, S, T, and U sets from the point of view of Descriptive Set Theory. Among the few sets whose exact Borel class is known, a large percentage turn out to be Π^0_3-complete. For example, the collection of reals that are normal or simply normal to base n [4]; $C^\infty(T)$, the class of infinitely differentiable functions (viewed as a 2π-periodic function on \mathbb{R}); and UC_X, the class of convergent sequences in a separable Banach space X are Π^0_3-complete [2]. Apparently, there are few known natural Σ^0_3-complete sets. Of course, the complement of a Π^0_3-complete set is Σ^0_3-complete. But the complement of a natural set need not be natural! Tom Linton [5] has shown that the family of H-sets, a class of thin sets from harmonic analysis, is Σ^0_3-complete, and this is the only Σ^0_3-complete natural set we know of (whose complement is not also natural). A. Kechris proposed to find out what the Borel classes of the A, S, T, and U sets are. It turns out that A is rather simple, being Σ^0_2-complete. On the other hand, T is Π^0_3-hard, while U is Σ^0_3-complete. Our main results are based on a theorem of W. M.
The exact Borel classes of the S and T sets are unknown to us.

Definitions and background

For spaces X and Y, XY denotes the set of all functions f from Y to X, with the usual product topology, X and Y being endowed with their usual topologies ($2 = \{0, 1\}$ and $\mathbb{N} = \{1, 2, 3, \ldots\}$ being discrete). For sets U and V, if S is a function from $X^{n+1} \times Y^{n+1}$ to $U^{n+1} \times V^{n+1}$ and $n \in \mathbb{N}$, then $S|_{n}$ is the function from $X^{n+1} \times Y^{n+1}$ to $U^{n} \times V^{n}$ such that if $S((x_1, \ldots, x_{n+1}), (y_1, \ldots, y_{n+1})) = ((u_1, \ldots, u_n), (v_1, \ldots, v_n))$, then $S|_{n}((x_1, \ldots, x_{n+1}), (y_1, \ldots, y_{n+1})) = ((u_1, \ldots, u_n), (v_1, \ldots, v_n))$. $\mathbb{P} = \{x \in \mathbb{R} : x > 1\}$ and \mathbb{A} denotes the class of all nonzero real algebraic numbers in \mathbb{C}. We use the standard terminology of Addison to describe the Borel hierarchy. Thus the multiplicative sets of level n are denoted by Π_{n}^{0}, while the additive class of level n is denoted by Σ_{n}^{0}. In particular, Σ_{0}^{0} = Open, Π_{1}^{0} = Closed, Σ_{2}^{0} = F_{σ}, Π_{2}^{0} = G_{δ}. In addition, the countable union of Π_{n}^{0} sets is Σ_{n+1}^{0}; the countable intersection of Π_{n}^{0} sets is a Σ_{n+1}^{0} set; the complement of a Π_{n}^{0} set is Σ_{n}^{0}; the Σ_{n}^{0} sets are closed under finite intersection and countable union; while the Π_{n}^{0} sets are closed under finite union and countable intersection. If the context demands it, we use $\Pi_{n}^{0}(X)$ to denote the Π_{n}^{0} subsets of a space X.

Let $\Gamma = \Sigma_{0}^{0}$ or Π_{n}^{0}. We call a set $C \subseteq X$ (a Polish space) Γ-hard if for any $B \in \Gamma(2^{\mathbb{N}})$, there is a continuous function f from $2^{\mathbb{N}}$ to X, such that $B = f^{-1}(C)$. If, moreover, $C \in \Gamma(X)$, we call C Γ-complete. It is well known (see [2]) that a Π_{n}^{0}-complete set in an uncountable Polish space is Π_{n}^{0} but not Σ_{n}^{0}, and if A is Π_{n}^{0}-hard, then A is not Σ_{n}^{0}. As well, in uncountable Polish spaces every Π_{n}^{0} set and every Σ_{n}^{0} set is Π_{n+1}^{0} and Σ_{n+1}^{0}, so the Borel hierarchy is increasing in n.

For a given set $C \subseteq X$, in order to find the exact Borel class of C, one must first calculate an upperbound for C, by showing, for example, that C is Π_{n}^{0} and then prove a lowerbound for C's Borel class, for example, by showing that C is Π_{n}^{0}-hard. Usually, finding the upperbound is fairly easy. However, it can be difficult to prove the hardness of C. Since the Borel classes Π_{n}^{0} and Σ_{n}^{0} are closed under continuous preimages, if B is Γ-hard (Γ-complete) and $B = f^{-1}(C)$, where f is a continuous function, then C is Γ-hard (Γ-complete, if also $C \in \Gamma$). This remark is the basis of a common method for showing that a given set B is Γ-hard: Choose an already known Γ-hard set B and show that there is a continuous function f such that $B = f^{-1}(C)$.

Now we define the A, S, T, and U sets, from Mahler's classification. For convenience we use Koksma's notation, which is equivalent to that of Mahler. Given algebraic $\alpha \in \mathbb{C}$, let $p(x) \in \mathbb{Z}[x]$ be its minimal polynomial. Fix $d, h \in \mathbb{N}$. Let $X_{d,h}$ be the finite collection of polynomials with degree $\leq d$ whose largest coefficient has absolute value $\leq h$. Let the height of a polynomial, $ht(p)$, be the maximum of the absolute values of the coefficients. Let $A_{d,h}$ be the finite collection of algebraic numbers α such that for some $p \in X_{d,h}$, $p(\alpha)$ is zero (recall that $0 \notin \mathbb{N}$). Thus, $A_{d,h}$ is the finite collection of algebraic (complex) numbers whose minimal polynomial has degree $\leq d$ and $ht \leq h$. Let ξ be any complex number and let α belong to $A_{d,h}$ such that $|\xi - \alpha|$ takes
the smallest positive value; define $\omega^*_d(\xi, h)$ by

$$|\xi - \alpha| = \frac{1}{h^d \omega^*_d(\xi, h + 1)}.$$

Set

$$\omega^*_d(\xi) = \limsup_{h \to \infty} \omega^*_d(\xi, h)$$ and $\omega^*(\xi) = \limsup_{d \to \infty} \omega^*_d(\xi).$

So the values of $\omega^*_d(\xi)$ and $\omega^*(\xi)$ measure how fast ξ is approximated by algebraic numbers. We define, according to the values of $\omega^*_d(\xi)$ and $\omega^*(\xi)$, the A, S, T, and U sets as follows:

$$A = \{\xi \in \mathbb{C} : \omega^*(\xi) = 0\},$$

$$S = \{\xi \in \mathbb{C} : 0 < \omega^*(\xi) < \infty\},$$

$$T = \{\xi \in \mathbb{C} : \omega^*(\xi) = \infty \text{ and } \forall d \in \mathbb{N} \ (\omega^*_d(\xi) < \infty)\},$$

$$U = \{\xi \in \mathbb{C} : \omega^*(\xi) = \infty \text{ and } \exists d \in \mathbb{N} \ (\omega^*_d(\xi) = \infty)\}.$$

Thus, the A numbers are slowly approximated by algebraic numbers. The S numbers are approximated a bit more quickly than A numbers. On the other hand, the T numbers and the U numbers are very rapidly approximated, i.e., the value of $\omega^*(\xi)$ is infinite. In particular, the approximation of the U numbers is so quick that for some $d \in \mathbb{N}$, $\omega^*_d(\xi)$ diverges. For these reasons, we claim that the set of complex numbers is naturally partitioned by the A, S, T, and U numbers.

Results

Lemma 1. $\xi \in A \iff \xi$ is an algebraic number.

Proof. See [1, pp. 85–94].

Proposition 2. (i) The A numbers are Σ^0_1-complete, and the U numbers are Σ^0_1.

(ii) The S numbers are Σ^0_2, while the collection of T numbers are Π^0_2.

Proof of Proposition 2. (i) For each $d \in \mathbb{N}$, let U_d be the collection of $\xi \in \mathbb{C}$ such that $\omega^*_d(\xi) = \infty$. Then U_d is Π^0_2, since

$$\xi \in U_d \iff \omega^*_d(\xi) = \infty$$

$$\iff \forall a \in \mathbb{N} \forall b \in \mathbb{N} \exists c \in \mathbb{N} \ (\omega^*_d(\xi, b + c) > a)$$

$$\iff \forall a \in \mathbb{N} \forall b \in \mathbb{N} \exists c \in \mathbb{N} \exists \alpha \in A_{d,b+c} \left(0 < |\xi - \alpha| < \frac{1}{(b + c)^{ad+1}}\right)$$

$$\iff \xi \in \bigcap_{a \in \mathbb{N}} \bigcap_{b \in \mathbb{N}} \bigcap_{c \in \mathbb{N}} \bigcup_{\alpha \in A_{d,b+c}} V(a, b, c, \alpha),$$

where $V(a, b, c, \alpha)$ is the collection of $\xi \in \mathbb{C}$ such that $0 < |\xi - \alpha| < 1/(b + c)^{ad+1}$, which is open. Since it is easy to see that for each d, $\omega^*_d(\xi) = \infty$ implies $\omega^*_{d+1}(\xi) = \infty$, we have $U = \bigcup_{d=1}^{\infty} U_d$ and U is Σ^0_2. It is well known that if D is a countable dense set in a perfect Polish space, then D is Σ^0_2-complete. Thus, by Lemma 1, A is Σ^0_2-complete.

(ii) By definition, T is the collection of $\xi \in \mathbb{C}$ such that $\omega^*(\xi) = \infty$ and $\forall a \in \mathbb{N} \ (\omega^*_a(\xi) < \infty)$. Thus, $T = M \cap N$, where $M = \{\xi \in \mathbb{C} : \omega^*(\xi) = \infty\}$
and $N = \{ \xi \in \mathbb{C} : \forall \alpha \in \mathbb{N} \ (\omega^*_\alpha(\xi) < \infty) \}$. Now M is Π^0_4, since

$$\xi \in M \iff \forall a \in \mathbb{N} \ \forall b \in \mathbb{N} \ \exists c \in \mathbb{N} \ (\omega^*_b(\xi) > a)$$

$$\iff \forall a \in \mathbb{N} \ \forall b \in \mathbb{N} \ \exists c \in \mathbb{N} \ \exists d \in \mathbb{N} \ \forall e \in \mathbb{N} \ \exists f \in \mathbb{N}$$

$$\left(\omega^*_{b+c}(\xi, e+f) > a + \frac{1}{d+1} \right)$$

$$\iff \xi \in \bigcap_{a \in \mathbb{N}} \bigcup_{b \in \mathbb{N}} \bigcup_{d \in \mathbb{N}} \bigcup_{e \in \mathbb{N}} \bigcup_{f \in \mathbb{N}} W(a, b, c, d, e, f),$$

where $W(a, b, c, d, e, f)$ is the collection of $\xi \in \mathbb{C}$ such that $\omega^*_{b+c}(\xi, e+f) > a + 1/(d+1)$, which is open by the argument above. So N is Π^0_3, since by (i) U is Σ^0_3 and

$$\xi \in N \iff \forall a \in \mathbb{N} \ (\omega^*_a(\xi) < \infty)$$

$$\iff \xi \in \mathbb{C} - U.$$

Hence T is Π^0_4, being the intersection of two Π^0_4 sets. Since $\xi \in S \iff \xi \notin T$, $\xi \notin U$, and $\xi \notin A$, S is Σ^0_3. \square

In $2^\mathbb{N}$, Q is the collection of sequences which end in zeros.

Lemma 3. There exists a continuous function ν from $2^\mathbb{N}$ to $\mathbb{N}^\mathbb{N}$ such that

(i) for each $\alpha \in \mathbb{N}$, $\nu(\alpha)(d) \leq \nu(\alpha)(d+1)$;

(ii) $\alpha \in Q \iff \lim_{d \to \infty} \nu(\alpha)(d) < \infty$.

Proof of Lemma 3. Let $\alpha \in 2^\mathbb{N}$. We produce $\beta = \nu(\alpha)$ recursively. First $\beta(1) = \alpha(1)$. Suppose that we have defined $\beta(i)$ for all $i \leq k$. Put $\beta(k+1) = \beta(k)$ if $\alpha(k+1) = 0$ and $\beta(k+1) = \beta(k)+1$ otherwise. It is easy to see that the function ν satisfies (i). As long as α ends in zeros, so does $\nu(\alpha)$ in constants. Otherwise, $\nu(\alpha)(d)$ goes to infinity as $d \to \infty$, because for infinitely many d's, $\nu(\alpha)(d+1) = \nu(\alpha)(d) + 1$. So (ii) is valid. For given $d \in \mathbb{N}$, $\alpha_1, \alpha_2 \in 2^\mathbb{N}$, such that $\alpha_1(i) = \alpha_2(i)$ for all $i \leq d$, $\nu(\alpha_1)(i) = \nu(\alpha_2)(i)$ for all $i \leq d$. So ν is continuous. This completes Lemma 3. \square

From Lemma 3, $\alpha \notin Q \iff \lim_{d \to \infty} \nu(\alpha)(d) = \infty$. To prove our main theorem, we need a standard example of the Π^0_3-complete set.

Lemma 4. The set $P_3 = \{ \alpha = (\alpha_d) \in (2^\mathbb{N})^\mathbb{N} : \forall d \in \mathbb{N} \ (\alpha_d \notin Q) \}$ is Π^0_3-complete.

Proof. See [2].

The following theorem is the main result of the paper.

Theorem 5. There is a continuous function f from $(2^\mathbb{N})^\mathbb{N}$ to \mathbb{C} such that

$$\alpha \in P_3 \iff f(\alpha) \in T \quad \text{and} \quad \alpha \notin P_3 \iff f(\alpha) \in U.$$

In particular, T is Π^0_3-hard and U is Σ^0_3-complete.

Roughly speaking, the original statement of a theorem of Schmidt is the following: Let $\alpha_1, \alpha_2, \ldots$ be any nonzero algebraic numbers and let ν_1, ν_2, \ldots be any real numbers exceeding 1. Then we may find $\xi \in \mathbb{C}$ such that according to $\alpha_1, \alpha_2, \ldots$ and ν_1, ν_2, \ldots, ξ is a U number or T number.

By using ν, which is constructed in Lemma 3, we shall effectively control ν_i's so that we are able to prove Theorem 5. In order to make it work, we need to state the reformulated version of a theorem of Schmidt which will play a crucial role in the proof of Theorem 5.
Theorem S (Schmidt). There exists a sequence \(S_n \) such that for each \(n \in \mathbb{N} \),
(i) \(S_n \) is a function from \(\mathbb{A}^n \times \mathbb{P}^n \) to \(\mathbb{A}^n \times (0, 1)^n \) and \(S_{n+1}|n = S_n \).
(ii) Suppose that
\[
S_n((\theta_1, \ldots, \theta_n), (\nu_1, \ldots, \nu_n)) = ((\gamma_1, \ldots, \gamma_n), (\lambda_1, \ldots, \lambda_n)).
\]
Then for each \(j < n \), \(\gamma_j/\theta_j \) is rational, \(H_j+1 > 2H_j \) and \(\frac{1}{4}H_j^{-1} < \gamma_{j+1} - \gamma_j < \frac{1}{2}H_j^{-1} \), where \(H_j = h_j^{(n)} \) and \(h_j = h(t(\gamma_j)) \), and furthermore, we have \(|\gamma_j - \beta| > B^{-1} \) for all algebraic numbers \(\beta \) with degree \(d \leq j \) distinct from \(\gamma_1, \ldots, \gamma_j \), where \(B = \lambda_d^{-1}b^{(3d)^4} \) and \(b \) denotes the height of \(\beta \).

Proof. See [1, pp. 85-94].

Using Theorem S we define the function \(S^* \) from \(\mathbb{A}^N \times \mathbb{P}^N \) to \(\mathbb{A}^N \times (0, 1)^N \) as follows: \(S^*((\theta_1, \theta_2, \ldots), (\nu_1, \nu_2, \ldots)) = ((\gamma_1, \gamma_2, \ldots), (\lambda_1, \lambda_2, \ldots)) \), where for each \(n \), \(S_n((\theta_1, \ldots, \theta_n), (\nu_1, \ldots, \nu_n)) = ((\gamma_1, \ldots, \gamma_n), (\lambda_1, \ldots, \lambda_n)) \). \(S^* \) is well defined by Theorem S(i).

Proof of Theorem 5. Let \(\alpha \in (2\mathbb{N})^N \). Fix a bijection \((,) \) from \(\mathbb{N} \times \mathbb{N} \) to \(\mathbb{N} \).
For each \(d, k \in \mathbb{N} \), define
\[
\nu((d,k)) = (\nu_1\nu_2\ldots) = \nu(\alpha_d)(k+1)(3d)^5 \quad \text{and} \quad \theta((d,k)) = \theta_d,k,
\]
where the function \(\nu \) is constructed in Lemma 3. Put \(A = \{\theta_d,k\} \) and \(\deg(\theta_d,k) = d \). Say
\[
S^*((\theta_1, \theta_2, \ldots), (\nu_1, \nu_2, \ldots)) = ((\gamma_1, \gamma_2, \ldots), (\lambda_1, \lambda_2, \ldots)).
\]
Then by Theorem S(ii), \(\gamma_1, \gamma_2, \ldots \) tends to a limit \(\xi \) which is a real number and satisfies
(1) \(|\xi - \beta| > B^{-1} \) for all algebraic numbers \(\beta \) distinct from \(\gamma_1, \gamma_2, \ldots \),
and also
(2) \(\frac{1}{4}H_j^{-1} \leq \xi - \gamma_j \leq H_j^{-1} \) for all \(j \).
Define
\[
f(\alpha) = \lim_{j \to \infty} \gamma_j = \xi.
\]
Claim. \(f \) is continuous from \((2\mathbb{N})^N \) to \(\mathbb{C} \).

Proof of the claim. Suppose \((\alpha_d^{(m)}) \to (\alpha_d) \) as \(m \to \infty \), where for each \(m \), \((\alpha_d^{(m)}) \in (2\mathbb{N})^N \) and \((\alpha_d) \in (2\mathbb{N})^N \). Say for each \(m \),
\[
f((\alpha_d^{(m)})) = \xi_m = \lim_k \gamma_k^{(m)} \quad \text{and} \quad f((\alpha_d)) = \xi = \lim_k \gamma_k,
\]
where for each \(k \in \mathbb{N} \), \(\gamma_k^{(m)} \) and \(\gamma_k \) are defined by \(S^* \), according to \((\alpha_d^{(m)}) \) and \((\alpha_d) \). Let \(\varepsilon > 0 \). Choose \(a_0 \) such that \(1/2^{a_0^{-2}} < \varepsilon \). Since \((\alpha_d^{(m)}) \) goes to \((\alpha_d) \) as \(m \to \infty \), by the definition of \(\gamma_k^{(m)} \) and \(\gamma_k \) we may find \(N_0 \in \mathbb{N} \) such that \(|\gamma_k^{(m)} - \gamma_k| = 0 \) for all \(m \geq N_0 \). Then for all \(m \geq N_0 \), we have the following inequality:
\[
|\xi_m - \xi| \leq |\xi_m - \gamma_k^{(m)}| + |\gamma_k^{(m)} - \gamma_k| + |\gamma_k - \xi| < \frac{1}{2^{a_0^{-2}}} < \varepsilon,
\]
since from (2) and Theorem S(ii),
\[
|\xi_m - \gamma_a^{(m)}| \leq (H_a^{(m)})^{-1} < \frac{1}{2^{a-1}} (H_1^{(m)})^{-1} \leq \frac{1}{2^{a-1}}
\]
and
\[
|\xi - \gamma_a| \leq H_a^{-1} < \frac{1}{2^{a-1}} H_1^{-1} \leq \frac{1}{2^{a-1}}
\]
for all \(a \geq 1 \). So \(f \) is a continuous function. □

Now we show the main part of the theorem. Depending on the properties of \(\nu \), Theorem S guarantees that we produce a \(T \) number or \(U \) number. So we divide the following two cases so that one can have more intuitive ideas.

Case 1. \(\alpha = (\alpha_d) \notin P_3 \), i.e., \(\exists d \in \mathbb{N} \ (\alpha_d \notin \mathbb{Q}) \).

Fix such \(d \), i.e., \(\alpha_d \notin \mathbb{Q} \). Then by Lemma 3, we have
\[
\lim_{k \to \infty} (\nu(\alpha_d)(k) + 1) = \infty .
\]
It is clear that for all \(k, h = h(d, k) \),
\[
h^{-d} \omega_d^*(\xi, h) \leq |\xi - \gamma(d, k)| \leq h^{-\nu(d, k)} \quad \text{from (2) and the definition of } \omega_d^*(\xi, h),
\]
where \(f(\alpha) = \xi \). So \(d \omega_d^*(\xi, h(d, h)) \geq \nu(d, k) - 1 \), i.e.,
\[
(3) \quad \omega_d^*(\xi, h(d, k)) \geq \frac{\nu(d, k) - 1}{d} \geq (\nu(\alpha_d)(k)) + 1)3^5 d^4 - \frac{1}{d} \quad \text{for all } k .
\]
It is easy to see that \(\lim sup_{k \to \infty} h(d, k) = \infty \), since the right side of (3) goes to infinity as \(k \to \infty \). This shows that we may choose \(\{k_m\} \) such that \(k_m \to \infty \) and \(h(d, k_m) \to \infty \) as \(m \to \infty \). From (3) we get the following inequality:
\[
\omega_d^*(\xi) = \lim_{h \to \infty} \lim sup_{m \to \infty} \omega_d^*(\xi, h(d, k_m)) \geq \lim_{m \to \infty} (\nu(\alpha_d)(k_m) + 1)3^5 d^4 - \frac{1}{d} = \infty .
\]
Therefore, \(\omega_d^*(\xi) = \infty \) and \(f(\alpha) = \xi \in U \). So we derive \(\alpha \notin P_3 \Rightarrow f(\alpha) = \xi \in U \).

Case 2. \(\alpha = (\alpha_d) \in P_3 \), i.e., \(\forall d \in \mathbb{N} \ (\alpha_d \in \mathbb{Q}) \).

Fix \(d \in \mathbb{N} \). Then for all \(h, k, m \), we have
\[
\xi - \gamma(m, k) \geq \frac{1}{4} h^{-\nu(\alpha_d)(k)(3m)^5},
\]
\[
|\xi - \beta| \geq \lambda \deg(\beta)(ht(\beta))^{-(3 \deg(\beta))^4}
\]
for all algebraic numbers \(\beta \) distinct from \(\gamma_1, \gamma_2, \ldots \) from (1) and (2), where \(f(\alpha) = \xi \). In fact, all nonzero algebraic numbers appear in these two inequalities. Let \(h \) be a given natural number. Then from (4) and the definition of \(\omega_d^*(\xi, h) \), we have the following inequality:
\[
(5) \quad h^{-d} \omega_d^*(\xi, h) \geq \min\{\frac{1}{4} h^{-M_0 d^3}, \lambda(d)h^{-(3d)^4}\},
\]
where \(M_0 = \sup\{\nu(\alpha_d)(k) + 1 : s \leq d \text{ and } k < \infty\} \) and \(\lambda(d) = \min\{\lambda_s : s \leq d\} \).
Even if for \(s \leq d \), there is no \(k \) such that \(h(s, k) = h \), this inequality can be applied. The value \(\lambda(d) \) is positive and \(1 \leq M_0 < \infty \), since \(\{\lambda_s : s \leq d\} \)
is the finite set of positive values and by assumption and Lemma 3, \(\forall d \in \mathbb{N} \) \(\lim_{k \to \infty} \nu(\alpha_d)(k) < \infty \). So from (5) we get

\[
\omega^*_d(\xi, h) \leq \max \left\{ \frac{\log 4}{\log h} + 3^5 M_0 d^4, \frac{\log 1/\lambda(d)}{d \log h} + 3^5 d^4 \right\} < \infty
\]

and

\[
\omega^*_d(\xi) = \limsup_{h \to \infty} \omega^*_d(\xi, h) \leq \max \{3^5 M_0 d^4, 3^5 d^4\} = 3^5 M_0 d^4 < \infty.
\]

Hence we can see that the inequality

\[
(6) \quad \omega^*_d(\xi) = \limsup_{h \to \infty} \omega^*_d(\xi, h) < \infty
\]

holds for all \(d \). But for all \(d, k \), we obtain

\[
\omega^*_d(\xi, h_{(d, k)}) = \frac{\nu(d, k) - 1}{d} \geq (\nu(\alpha_d)(k) + 1)3^5 d^4 - \frac{1}{d}.
\]

As in Case 1, \(\omega^*_d(\xi) \geq 3^5 d^4 M_1 - \frac{1}{d} \), where \(M_1 = \lim_{k \to \infty} \nu(\alpha_d)(k) + 1 \geq 1 \). Therefore,

\[
(7) \quad \omega^*_d(\xi) \geq (3d)^4 \quad \text{and} \quad \omega^*(\xi) = \limsup_{d \to \infty} \omega^*_d(\xi) = \infty.
\]

From (6) and (7), for all \(d \in \mathbb{N} \), \(\omega^*_d(\xi) < \infty \) and \(\omega^*(\xi) = \infty \), i.e., \(f(\alpha) = \xi \in T \). So we derive \(\alpha \in P_3 \Rightarrow f(\alpha) = \xi \in T \).

By Case 1 and Case 2, we obtain \(\alpha \in P_3 \Rightarrow f(\alpha) \in T \) and \(\alpha \notin P_3 \Rightarrow f(\alpha) \in U \). By definition of \(T, U \), it is easy to see that they are disjoint. So the continuous function \(f \) satisfies \(P_3 = f^{-1}(T) \) and \(C - P_3 = f^{-1}(U) \). This fact implies that \(T, U \) are \(\Pi^0_3 \)-hard, \(\Sigma^0_3 \)-complete respectively, since by Lemma 4, \(P_3 \) is \(\Pi^0_3 \)-complete. We complete the proof of Theorem 5. \(\square \)

Remark. We conjecture that \(S, T \) are \(\Sigma^0_4 \)-complete, \(\Pi^0_4 \)-complete, respectively.

ACKNOWLEDGMENT

I would like to thank Professor Alekos Kechris for a number of helpful suggestions. Also I thank Tom Linton for his help on the paper. The author is indebted to the referee for valuable comments.

REFERENCES

5. Tom Linton, The H sets in the unit circle are properly \(G_{\delta^0} \), Real Analysis Exchange 19 (1993–94), 203–211.

Department of Mathematics, California Institute of Technology, Pasadena, California 91125

E-mail address: khase@cco.caltech.edu