Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Asymptotics of reproducing kernels on a plane domain

Author: Miroslav Engliš
Journal: Proc. Amer. Math. Soc. 123 (1995), 3157-3160
MSC: Primary 30C40; Secondary 30E15, 46E22
MathSciNet review: 1277107
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Omega $. be a plane domain of hyperbolic type, $ \vert dz\vert/w(z)$ the Poincaré metric on $ \Omega $, and $ {K_{\Omega ,q}}(x,\bar y)$ the reproducing kernel for the Hilbert space $ \mathcal{A}_q^2(\Omega )$ of all holomorphic functions on $ \Omega $ square-integrable with respect to the measure $ w{(z)^{2q - 2}}\vert dz \wedge d\bar z\vert$. It is proved that

$\displaystyle \mathop {\lim }\limits_{q \to + \infty } \frac{{{K_{\Omega ,q}}(z,\bar z)w{{(z)}^{2q}}}}{{2q}} = \frac{1}{\pi }.$

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C40, 30E15, 46E22

Retrieve articles in all journals with MSC: 30C40, 30E15, 46E22

Additional Information

PII: S 0002-9939(1995)1277107-0
Keywords: Bergman kernel, automorphic functions
Article copyright: © Copyright 1995 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia