Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Solutions of several problems in the theory of compact positive operators


Authors: Y. A. Abramovich and A. W. Wickstead
Journal: Proc. Amer. Math. Soc. 123 (1995), 3021-3026
MSC: Primary 47B65; Secondary 47B07
DOI: https://doi.org/10.1090/S0002-9939-1995-1283534-8
MathSciNet review: 1283534
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a compactly dominated compact operator S on a Dedekind complete Banach lattice whose modulus $ \vert S\vert$ is not compact. We also construct a compactly dominated compact operator without modulus.


References [Enhancements On Off] (What's this?)

  • [AJ] Y. A. Abramovich and L. P. Janovsky, Applications of the Rademacher systems to operator characterizations of Banach lattices, Colloq. Math. 46 (1982), 75-78. MR 672365 (84h:46029)
  • [AW] Y. A. Abramovich and A. W. Wickstead, A compact regular operator without modulus, Proc. Amer. Math. Soc. 116 (1992), 721-726. MR 1098395 (93a:47038)
  • [AB] C. D. Aliprantis and O. Burkinshaw, Positive operators, Academic Press, New York and London, 1985. MR 809372 (87h:47086)
  • [DF] P. G. Dodds and D. H. Fremlim, Compact operators in Banach lattices, Israel J. Math. 34 (1979), 287-320. MR 570888 (81g:47037)
  • [HL] C. B. Huijsmans and W. A. J. Luxemburg, eds., Positive operators and semigroups on Banach lattices, Kluwer, Dordrecht, 1992. MR 1184871 (93e:47003)
  • [K1] U. Krengel, Remark on the modulus of compact operators, Bull. Amer. Math. Soc. 72 (1966), 132-133. MR 0190752 (32:8162)
  • [K2] -, Über den Absolutbetrag stetiger linearer Operatoren und seine Anwendung auf ergodische Zerlegung, Math. Scand. 13 (1963), 151-187. MR 0176034 (31:310)
  • [W1] A. W. Wickstead, Converses for the Dodds-Fremlin and Kalton-Saab theorems, Math. Proc. Cambridge Philos. Soc. (to appear). MR 1373356 (96m:47067)
  • [W2] -, Dedekind completeness of some lattices of compact operators, Bull. Polish. Acad. Sci. Math. (to appear). MR 1414786 (97k:47032)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B65, 47B07

Retrieve articles in all journals with MSC: 47B65, 47B07


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1283534-8
Keywords: Banach lattice, compact operator, modulus
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society