Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Best constants in Kahane-Khintchine inequalities for complex Steinhaus functions


Author: Goran Peškir
Journal: Proc. Amer. Math. Soc. 123 (1995), 3101-3111
MSC: Primary 46E30; Secondary 41A50, 60E15, 60G50
DOI: https://doi.org/10.1090/S0002-9939-1995-1283561-0
MathSciNet review: 1283561
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\{ {\varphi _k}\} _{k \geq 1}}$ be a sequence of independent random variables uniformly distributed on $ [0,2\pi [$, and let $ {\left\Vert \bullet \right\Vert _\psi }$ denote the Orlicz norm induced by the function $ \psi (x) = \exp (\vert x{\vert^2}) - 1$. Then

$\displaystyle {\left\Vert {\sum\limits_{k = 1}^n {{z_k}{e^{i{\varphi _k}}}} } \... ...q \sqrt 2 {\left( {\sum\limits_{k = 1}^n {\vert{z_k}{\vert^2}} } \right)^{1/2}}$

for all $ {z_1}, \ldots ,{z_n} \in {\mathbf{C}}$ and all $ n \geq 1$. The constant $ \sqrt 2 $ is shown to be the best possible. The method of proof relies upon a combinatorial argument, Taylor expansion, and the central limit theorem. The result is additionally strengthened by showing that the underlying functions are Schur-concave. The proof of this fact uses a result on the multinomial distribution of Rinott, and Schur's proposition on the sum of convex functions. The estimates obtained throughout are shown to be the best possible. The result extends and generalizes to provide similar inequalities and estimates for other Orlicz norms.

References [Enhancements On Off] (What's this?)

  • [1] M. L. Eaton, A note on symmetric Bernoulli random variables, Ann. Math. Statist. 41 (1970), 1223-1226. MR 0268930 (42:3827)
  • [2] B. Efron, Student's t-test under symmetry conditions, J. Amer. Statist. Assoc. 64 (1969), 1278-1302. MR 0251826 (40:5053)
  • [3] E. D. Gluskin, A. Pietsch, and J. Puhl, A generalization of Khintchine's inequality and its application in the theory of operator ideals, Studia Math. 67 (1980), 149-155. MR 583295 (81m:47031)
  • [4] U. Haagerup, The best constants in the Khintchine inequality, Studia Math. 70 (1982), 231-283. MR 654838 (83m:60031)
  • [5] J. Hoffmann-Jørgensen, Function norms, Institute of Mathematics, University of Aarhus, Preprint Series No. 40, 1991.
  • [6] W. B. Johnson, G. Schechtman, and J. Zinn, Best constants in moment inequalities for linear combinations of independent and exchangeable random variables, Ann. Probab. 13 (1985), 234-253. MR 770640 (86i:60054)
  • [7] J. P. Kahane, Some random series of functions, Heath, Boston, MA, 1968 (first edition), and Cambridge Univ. Press, London and New York, 1985 (second edition). MR 833073 (87m:60119)
  • [8] A. Khintchine, Über dyadische Brüche, Math. Z. 18 (1923), 109-116. (German) MR 1544623
  • [9] R. Komorowski, On the best possible constants in the Khintchine inequality for $ p \geq 3$, Bull. London Math. Soc. 20 (1988), 73-75. MR 916079 (89e:60037)
  • [10] M. A. Krasnosel'skii and Ya. B. Rutickii, Convex functions and Orlicz spaces, P. Noordhoff, Groningen, 1961. MR 0126722 (23:A4016)
  • [11] A. W. Marshall and I. Olkin, Inequalities: Theory of majorization and its applications, Academic Press, New York, 1979. MR 552278 (81b:00002)
  • [12] C. M. Newman, An extension of Khintchine's inequality, Bull. Amer. Math. Soc. 81 (1975), 913-915. MR 0375458 (51:11651)
  • [13] G. Peškir, Best constants in Kahane-Khintchine inequalities in Orlicz spaces, Institute of Mathematics, University of Aarhus, Preprint Series No. 10, 1992 (42 pp.); J. Multivariate Anal. 45 (1993), 183-216. MR 1221917 (94h:46043)
  • [14] -, Maximal inequalities of Kahane-Khintchine's type in Orlicz spaces, Institute of Mathematics, University of Aarhus, Preprint Series No. 33, 1992 (18 pp.); Math. Proc. Cambridge Philos. Soc. 115 (1994), 175-190. MR 1253291 (95b:46049)
  • [15] Y. Rinott, Multivariate majorization and rearrangement inequalities with some applications to probability and statistics, Israel J. Math. 15 (1973), 60-77. MR 0368308 (51:4549)
  • [16] J. Sawa, The best constant in the Khintchine inequality for complex Steinhaus variables, the case $ p = 1$, Studia Math. 81 (1985), 107-126. MR 818175 (87d:26024)
  • [17] S. B. Stechkin, On the best lacunary systems of functions, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 357-366. (Russian) MR 0131097 (24:A951)
  • [18] S. J. Szarek, On the best constant in the Khintchine inequality, Studia Math. 58 (1978), 197-208.
  • [19] B. Tomaszewski, Two remarks on the Khintchine-Kahane inequality, Colloq. Math. 46 (1982), 283-288. MR 678147 (84g:46020)
  • [20] R. M. G. Young, On the best possible constants in the Khintchine inequality, J. London Math. Soc. 14, 496-504. MR 0438089 (55:11008)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E30, 41A50, 60E15, 60G50

Retrieve articles in all journals with MSC: 46E30, 41A50, 60E15, 60G50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1283561-0
Keywords: Kahane-Khintchine inequality, complex Steinhaus sequence, Bernoulli sequence, Schur-convex (-concave), the gauge norm, Orlicz norm, Gaussian distribution, multinomial distribution
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society