Best constants in Kahane-Khintchine inequalities for complex Steinhaus functions

Author:
Goran Peškir

Journal:
Proc. Amer. Math. Soc. **123** (1995), 3101-3111

MSC:
Primary 46E30; Secondary 41A50, 60E15, 60G50

DOI:
https://doi.org/10.1090/S0002-9939-1995-1283561-0

MathSciNet review:
1283561

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a sequence of independent random variables uniformly distributed on , and let denote the Orlicz norm induced by the function . Then

**[1]**M. L. Eaton,*A note on symmetric Bernoulli random variables*, Ann. Math. Statist.**41**(1970), 1223-1226. MR**0268930 (42:3827)****[2]**B. Efron,*Student's t-test under symmetry conditions*, J. Amer. Statist. Assoc.**64**(1969), 1278-1302. MR**0251826 (40:5053)****[3]**E. D. Gluskin, A. Pietsch, and J. Puhl,*A generalization of Khintchine's inequality and its application in the theory of operator ideals*, Studia Math.**67**(1980), 149-155. MR**583295 (81m:47031)****[4]**U. Haagerup,*The best constants in the Khintchine inequality*, Studia Math.**70**(1982), 231-283. MR**654838 (83m:60031)****[5]**J. Hoffmann-Jørgensen,*Function norms*, Institute of Mathematics, University of Aarhus, Preprint Series No. 40, 1991.**[6]**W. B. Johnson, G. Schechtman, and J. Zinn,*Best constants in moment inequalities for linear combinations of independent and exchangeable random variables*, Ann. Probab.**13**(1985), 234-253. MR**770640 (86i:60054)****[7]**J. P. Kahane,*Some random series of functions*, Heath, Boston, MA, 1968 (first edition), and Cambridge Univ. Press, London and New York, 1985 (second edition). MR**833073 (87m:60119)****[8]**A. Khintchine,*Über dyadische Brüche*, Math. Z.**18**(1923), 109-116. (German) MR**1544623****[9]**R. Komorowski,*On the best possible constants in the Khintchine inequality for*, Bull. London Math. Soc.**20**(1988), 73-75. MR**916079 (89e:60037)****[10]**M. A. Krasnosel'skii and Ya. B. Rutickii,*Convex functions and Orlicz spaces*, P. Noordhoff, Groningen, 1961. MR**0126722 (23:A4016)****[11]**A. W. Marshall and I. Olkin,*Inequalities*:*Theory of majorization and its applications*, Academic Press, New York, 1979. MR**552278 (81b:00002)****[12]**C. M. Newman,*An extension of Khintchine's inequality*, Bull. Amer. Math. Soc.**81**(1975), 913-915. MR**0375458 (51:11651)****[13]**G. Peškir,*Best constants in Kahane-Khintchine inequalities in Orlicz spaces*, Institute of Mathematics, University of Aarhus, Preprint Series No. 10, 1992 (42 pp.); J. Multivariate Anal.**45**(1993), 183-216. MR**1221917 (94h:46043)****[14]**-,*Maximal inequalities of Kahane-Khintchine's type in Orlicz spaces*, Institute of Mathematics, University of Aarhus, Preprint Series No. 33, 1992 (18 pp.); Math. Proc. Cambridge Philos. Soc.**115**(1994), 175-190. MR**1253291 (95b:46049)****[15]**Y. Rinott,*Multivariate majorization and rearrangement inequalities with some applications to probability and statistics*, Israel J. Math.**15**(1973), 60-77. MR**0368308 (51:4549)****[16]**J. Sawa,*The best constant in the Khintchine inequality for complex Steinhaus variables, the case*, Studia Math.**81**(1985), 107-126. MR**818175 (87d:26024)****[17]**S. B. Stechkin,*On the best lacunary systems of functions*, Izv. Akad. Nauk SSSR Ser. Mat.**25**(1961), 357-366. (Russian) MR**0131097 (24:A951)****[18]**S. J. Szarek,*On the best constant in the Khintchine inequality*, Studia Math.**58**(1978), 197-208.**[19]**B. Tomaszewski,*Two remarks on the Khintchine-Kahane inequality*, Colloq. Math.**46**(1982), 283-288. MR**678147 (84g:46020)****[20]**R. M. G. Young,*On the best possible constants in the Khintchine inequality*, J. London Math. Soc.**14**, 496-504. MR**0438089 (55:11008)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46E30,
41A50,
60E15,
60G50

Retrieve articles in all journals with MSC: 46E30, 41A50, 60E15, 60G50

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1283561-0

Keywords:
Kahane-Khintchine inequality,
complex Steinhaus sequence,
Bernoulli sequence,
Schur-convex (-concave),
the gauge norm,
Orlicz norm,
Gaussian distribution,
multinomial distribution

Article copyright:
© Copyright 1995
American Mathematical Society