Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A counterexample on the semicontinuity of minima


Authors: Fernando Luque-Vásquez and Onésimo Hernández-Lerma
Journal: Proc. Amer. Math. Soc. 123 (1995), 3175-3176
MSC: Primary 49J45; Secondary 49K40
MathSciNet review: 1301515
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let X and Y be metric spaces, $ \Phi $ a multifunction from X to Y, and v a real-valued function on $ X \times Y$. We give an example in which $ \Phi $ is continuous, and v is continuous, inf-compact and bounded below, but the minimum function $ {v^ \ast }(x): = {\inf _{y \in \Phi (x)}}v(x,y)$ on X is not lower semicontinuous.


References [Enhancements On Off] (What's this?)

  • [1] Jean-Pierre Aubin, Optima and equilibria, Graduate Texts in Mathematics, vol. 140, Springer-Verlag, Berlin, 1993. An introduction to nonlinear analysis; Translated from the French by Stephen Wilson. MR 1217485
  • [2] C. Berge, Topological spaces, Macmillan, New York, 1963.
  • [3] Dimitri P. Bertsekas and Steven E. Shreve, Stochastic optimal control, Mathematics in Science and Engineering, vol. 139, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. The discrete time case. MR 511544
  • [4] Onésimo Hernández-Lerma and Wolfgang J. Runggaldier, Monotone approximations for convex stochastic control problems, J. Math. Systems Estim. Control 4 (1994), no. 1, 99–140. MR 1298550
  • [5] Manfred Schäl, Conditions for optimality in dynamic programming and for the limit of 𝑛-stage optimal policies to be optimal, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32 (1975), no. 3, 179–196. MR 0378841

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 49J45, 49K40

Retrieve articles in all journals with MSC: 49J45, 49K40


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1995-1301515-2
Keywords: Minimization problem, multifunctions, measurable selections
Article copyright: © Copyright 1995 American Mathematical Society