Duality on noncompact manifolds and complements of topological knots

Author:
Gerard A. Venema

Journal:
Proc. Amer. Math. Soc. **123** (1995), 3251-3262

MSC:
Primary 57M30; Secondary 55M05, 55Q05

DOI:
https://doi.org/10.1090/S0002-9939-1995-1307570-8

MathSciNet review:
1307570

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the image of a topological embedding of into . In this paper the homotopy groups of the complement are studied. In contrast with the situation in the smooth and piecewise-linear categories, it is shown that the first nonstandard homotopy group of the complement of such a topological knot can occur in any dimension in the range 1 through . If the first nonstandard homotopy group of the complement occurs above the middle dimension, then the end of must have a nontrivial homotopy group in the dual dimension. The complement has the proper homotopy type of if both the complement and the end of the complement have standard homotopy groups in every dimension below the middle dimension.

A new form of duality for noncompact manifolds is developed. The duality theorem is the main technical tool used in the paper.

**[1]**S. C. Ferry,*Homotoping*-*maps to homeomorphisms*, Amer. J. Math.**101**(1979), 567-582. MR**533191 (81f:57007a)****[2]**M. H. Freedman,*The topology of four-dimensional manifolds*, J. Differential Geom.**17**(1982), 357-453. MR**679066 (84b:57006)****[3]**M. H. Freedman and F. Quinn,*Topology of 4-manifolds*, Princeton Univ. Press, Princeton, NJ, 1990. MR**1201584 (94b:57021)****[4]**C. Guilbault,*An open collar theorem for 4-manifolds*, Trans. Amer. Math. Soc.**331**(1992), 227-245. MR**1038016 (92g:57030)****[5]**J. G. Hollingsworth and T. B. Rushing,*Homotopy characterization of weakly flat codimension 2 spheres*, Amer. J. Math.**98**(1976), 385-394. MR**0420631 (54:8644)****[6]**A. Kawauchi,*A partial Poincaré duality theorem for infinite cyclic coverings*, Quart. J. Math. Oxford Ser. (2)**26**(1975), 437-458. MR**0394691 (52:15490)****[7]**M. Kervaire and C. Weber,*A survey of multidimensional knots*, Knot Theory (J. C. Hausmann, ed.), Springer-Verlag, New York and Berlin, 1978, pp. 61-134. MR**521731 (80f:57009)****[8]**V. T. Liem and G. A. Venema,*Characterization of knot complements in the 4-sphere*, Topology Appl.**42**(1991), 231-245. MR**1137949 (92k:57045)****[9]**-,*On the asphericity of knot complements*, Canad. J. Math.**45**(1993), 340-356. MR**1208119 (93m:57027)****[10]**J. Levine,*Unknotting spheres in codimension two*, Topology**4**(1965), 9-16. MR**0179803 (31:4045)****[11]**D. R. McMillan, Jr.,*A criterion for cellularity in a manifold*, Ann. of Math. (2)**79**(1964), 327-337. MR**0161320 (28:4528)****[12]**J. Milnor,*Infinite cyclic coverings*, Conference on the Topology of Manifolds, Prindle, Weber and Schmidt, Boston, 1968, pp. 115-133. MR**0242163 (39:3497)****[13]**D.W. Sumners,*Homotopy torsion in codimension two knots*, Proc. Amer. Math. Soc.**24**(1970), 229-240. MR**0253316 (40:6531)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57M30,
55M05,
55Q05

Retrieve articles in all journals with MSC: 57M30, 55M05, 55Q05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1307570-8

Keywords:
Knot complement,
homotopy groups,
duality

Article copyright:
© Copyright 1995
American Mathematical Society