Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Betti number of the image of a codimension-$ k$ immersion with normal crossings


Authors: Carlos Biasi and Osamu Saeki
Journal: Proc. Amer. Math. Soc. 123 (1995), 3549-3554
MSC: Primary 57R42; Secondary 57R40
DOI: https://doi.org/10.1090/S0002-9939-1995-1273476-6
MathSciNet review: 1273476
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f:M \to N$ be a codimension-k immersion with normal crossings of a closed m-dimensional manifold. We show that f is an embedding if and only if the $ (m - k + 1)$-th Betti numbers of M and $ f(M)$ coincide, under a certain condition on the normal bundle of f.


References [Enhancements On Off] (What's this?)

  • [BMS1] C. Biasi, W. Motta, and O. Saeki, A note on separation properties of codimension-1 immersions with normal crossings, Topology Appl. 52 (1993), 81-87. MR 1237182 (94g:57033)
  • [BMS2] -, A remark on the separation by immersions in codimension-1, Topology Appl. (to appear). MR 1314617 (96a:57064)
  • [BR] C. Biasi and M. C. Romero Fuster, A converse of the Jordan-Brouwer theorem, Illinois J. Math. 36 (1992), 500-504. MR 1161979 (94b:57035)
  • [He] R. Herbert, Multiple points of immersed manifolds, Mem. Amer. Math. Soc. No. 34 (250), 1981. MR 634340 (84c:57022)
  • [Hi] M. D. Hirsch, The complement of a codimension-k immersion, Proc. Cambridge Philos. Soc. 107 (1990), 103-107. MR 1021876 (90j:57023)
  • [S] O. Saeki, Separation by a codimension-1 map with a normal crossing point, preprint, 1992. MR 1351853 (96f:57021)
  • [W] H. Whitney, On the topology of differentiable manifolds, Lectures on Topology, Univ. Michigan Press, Ann Arbor, MI, 1941. MR 0005300 (3:133a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57R42, 57R40

Retrieve articles in all journals with MSC: 57R42, 57R40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1273476-6
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society