Compacta with dense ambiguous loci of metric projections and antiprojections

Author:
N. V. Zhivkov

Journal:
Proc. Amer. Math. Soc. **123** (1995), 3403-3411

MSC:
Primary 41A65; Secondary 46B20, 54E52

DOI:
https://doi.org/10.1090/S0002-9939-1995-1273531-0

MathSciNet review:
1273531

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In every strictly convexifiable Banach space *X* with there exists a dense set of compacta in the Hausdorff set topology such that with respect to an arbitrary equivalent strictly convex norm in *X* both the metric projection and the metric antiprojection generated by any member of are densely multivalued.

**[As]**E. Asplund,*Farthest points in reflexive locally uniformly rotund spaces*, Israel J. Math.**4**(1966), 213-216. MR**0206662 (34:6480)****[Bl]**J. Blatter,*Weiteste Punkte und Nachste Punkte*, Rev. Roumaine Math. Pures Appl.**14**(1969), 615-621. MR**0251510 (40:4737)****[BKM]**F.S. De Blasi, P.S. Kenderov, and J. Myjak,*Ambiguous loci of the metric projection onto compact starshaped sets in a Banach space*, Monatsh. Math.**119**(1995), 23-36. MR**1315681 (96d:52004)****[BM1]**F.S. De Blasi and J. Myjak,*Ambiguous loci of the nearest point mapping in Banach spaces*, Arch. Math.**61**(1993), 377-384. MR**1236316 (94i:41043)****[BM2]**-,*Ambiguous loci of the farthest distance mapping from compact convex sets*, Studia Math. (to appear). MR**1311690 (95k:46020)****[BM3]**-,*On compact connected sets in Banach spaces*(to appear).**[BF]**J.M. Borwein and S. Fitzpatrick,*Existence of nearest points in Banach spaces*, Canad. J. Math.**41**(1989), 702-720. MR**1012624 (90i:46024)****[Ko]**S.V. Konyagin,*On approximation of closed sets in Banach spaces and the characterization of strongly convex spaces*, Soviet Math. Dokl.**21**(1980), 418-422.**[L1]**Ka-Sing Lau,*Farthest points in weakly compact spaces*, Israel J. Math.**22**(1975), 168-174. MR**0394126 (52:14931)****[L2]**-,*Almost Chebyshev subsets in reflexive Banach spaces*, Indiana Univ. Math. J.**27**(1978), 791-795. MR**0510772 (58:23286)****[Lu]**D. Lubell,*Proximity, Swiss cheese and offshore rights*, preprint.**[Si]**I. Singer,*Some remarks on approximative compactness*, Rev. Roumaine Math. Pures Appl.**9**(1964), 167-177. MR**0178450 (31:2707)****[St]**S.B. Stechkin,*Approximative properties of subsets of Banach spaces*, Rev. Roumaine Math. Pures Appl.**8**(1963), 5-8.**[Za]**T. Zamfirescu,*The nearest point mapping is single-valued nearly everywhere*, Arch. Math.**54**(1990), 563-566. MR**1052977 (91k:41061)****[Zh]**N.V. Zhivkov,*Examples of plane compacta with dense ambiguous loci*, C. R. Acad. Bulgare Sci.**46**(1993), 27-30. MR**1264020 (95e:52007)****[Zh2]**-,*Peano continua generating densely multivalued metric projections*, Rend. Sem. Mat. Univ. Politec. Torino (to appear). MR**1345603 (97a:46017)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
41A65,
46B20,
54E52

Retrieve articles in all journals with MSC: 41A65, 46B20, 54E52

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1273531-0

Keywords:
dense ,
metric projection,
antiprojection,
ambiguous locus

Article copyright:
© Copyright 1995
American Mathematical Society