A FULL EXTENSION OF THE ROGERS-RAMANUJAN CONTINUED FRACTION

GEORGE E. ANDREWS AND DOUGLAS BOWMAN

(Communicated by Dennis A. Hejhal)

ABSTRACT. In this paper, we present the natural extension of the Rogers-Ramanujan continued fraction to the nonterminating very well-poised basic hypergeometric function g^7. In a letter to Hardy, Ramanujan indicated that he possessed a four variable generalization. Our generalization has seven variables and is, perhaps, all one can expect from this method.

1. Introduction

One of the most intriguing results from classical q-series is the Rogers-Ramanujan continued fraction [1, p. 440]:

\[
\prod_{n=0}^{\infty} \frac{(1 - q^{5n+2})(1 - q^{5n+3})}{(1 - q^{5n+1})(1 - q^{5n+4})} = 1 + \frac{q}{1 + \frac{q^2}{1 + \frac{q^3}{1 + \cdots}}},
\]

where $|q| < 1$ throughout this paper.

The proof of (1.1) relies fundamentally on the following. Let

\[
G(z, q) = G(z) = 1 + \sum_{n=1}^{\infty} \frac{z^n q^{n^2}}{(1 - q)(1 - q^2) \cdots (1 - q^n)}.
\]

Then

\[
G(z) = \prod_{n=1}^{\infty} (1 - z q^n)^{-1}
\]

\[
\times \left(1 + \sum_{n=1}^{\infty} \frac{(1 - z q)(1 - z q^2) \cdots (1 - z q^{n-1})(-1)^n z^{2n} q^{n(5n-1)/2} (1 - z q^{2n})}{(1 - q)(1 - q^2) \cdots (1 - q^n)}\right),
\]

Received by the editors April 4, 1994.

1991 Mathematics Subject Classification. Primary 33D10, 33D20.

Key words and phrases. Rogers-Ramanujan, continued fractions.

The first author was partially supported by National Science Foundation Grant DMS 8702695-04. The second author was partially supported by National Science Foundation Grant DMS-9306089.
and

\[
\frac{G(z)}{G(zq)} = 1 + \frac{zq}{1 + \frac{zq^2}{1 + \frac{zq^3}{\ddots}}}.
\]

G. N. Watson [7] gave the following five-parameter generalization of (1.3) which is perhaps the most natural nonmultiple series generalization:

\[
\begin{align*}
&\phi(q,qz^2,qz^4,qz^6,qz^8,qz^{10},qz^{12},qz^{14},qz^{16},qz^{18},qz^{20}); \left(\frac{zq^n}{a_1a_2\cdots a_5}\right)_{n}
\end{align*}
\]

\[
(1.5)
\]

where \(a_5 = q^{-N}\) with \(N\) a nonnegative integer, and

\[
(a;q)_N = (a)_N = (1-a)(1-aq)\cdots(1-aq^{N-1}),
\]

(1.6)

\[
l_{r+1}(a_0, a_1, \cdots, a_r; q, t; b_1, \cdots, b_r) = \sum_{n=0}^{\infty} \left(\frac{a_0}{a_1}\right)_{n} \cdots \left(\frac{a_r}{a_{r+1}}\right)_{n} \frac{t^n}{(q)_n(b_1)_n \cdots (b_r)_n}.
\]

(1.7)

We remark that the expressions in (1.5) are most naturally viewed as functions of \(\alpha_1', \alpha_2', \alpha_3', \alpha_4', \alpha_5'\) and are, in fact, continuous in each \(\frac{1}{\alpha_i}\) around zero, i.e. \(\beta_i = \infty\). Consequently, when we set any of \(\alpha_1, \ldots, \alpha_5 = \infty\) throughout this paper we shall be doing so in light of the above comments. We could, of course, have begun with each \(\alpha_i\) replaced by its reciprocal; however this would not be consistent with standard notation [5, pp. 4, 35].

When \(\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = \infty\) (i.e. \(\alpha_5 = \infty\) means \(\lim_{N \to \infty} q^{-N}\)), (1.5) reduces term-by-term to (1.3). In [1, p. 434], it is noted that the case \(\alpha_3 = \alpha_4 = \alpha_5 = \infty\) of (1.5) is quite possibly the function used in a general continued fraction identity alluded to by Ramanujan [6, pp. xxviii]. One is naturally led to ask: Can one extend (1.4) wherein \(G(z)\) is replaced by the very well-poised \(\phi\) of (1.5)?

We answer this question affirmatively in Theorem 1. It is to be emphasized that Theorem 1 does not require any of \(\alpha_1, \alpha_2, \ldots, \alpha_5\) to be of the form \(q^{-N}\). Consequently, our result holds for the nonterminating very well-poised \(\phi\) first considered by W. N. Bailey in [4] (cf. [5, p. 42, eq. (2.10.10)]).

2. \(q\)-HYPERGEOMETRIC BACKGROUND

Our work is based on the \(q\)-difference equations for very well-poised basic hypergeometric series studied in [1] (cf. [2]). Thus we require many of the auxiliary functions defined there.

\[
C_{k,i}(a_1, a_2, \ldots, a_k; x; q) = C_{k,i}(a_1; x; q)_{k}\]

\[
= \sum_{n \geq 0} (-1)^{n(\lambda+1)} x^{kn} (a_1a_2\cdots a_k)^{-n} q^{(2k-\lambda+1)n^2+(\lambda+1)n-2in)/2}
\]

\[
(1 - x+q^{2n}) \frac{(x)_n(a_1)_n(a_2)_n\cdots(a_k)_n}{(1-x)q_{a_1}_n(a_2)_n\cdots(a_k)_n};
\]

(2.1)
A FULL EXTENSION OF THE ROGERS-RAMANUJAN CONTINUED FRACTION

\[H_{k,i}(a_1, a_2, \ldots, a_k; x, q) = H_{k,0}(a_1; x, q) \cdot C_{k,i}(a_1; x, q). \]

(2.2)

We note that [1, p. 434]

\[C_{k,0}(a_1; x, q) = 2^{k+1} \phi_{2k+3} \left(\frac{x}{a_1}, \frac{x}{a_2}, \ldots, \frac{x}{a_{2k+1}} \right). \]

(2.3)

The crucial relations among these functions are the following [1, p. 435, Theorem 1]:

\[H_{k,i}(a_1; x, q) - H_{k,i-1}(a_1; x, q) = (-1)^i \sigma_i \left(\frac{1}{a_1}, \ldots, \frac{1}{a_k} \right) x^{i-1} H_{k,0}(a_1; x, q), \]

where \(\sigma_i(y_1, \ldots, y_k) \) is the \(i \)-th elementary symmetric function of \(y_1, \ldots, y_k \);

\[H_{k,0}(a_1; x, q) = -x^{-i} H_{k,i}(a_1; x, q); \]

(2.5)

\[H_{k,0}(a_1; x, q) = 0. \]

(2.6)

Henceforward we are only interested in the case \(k = 2, \lambda = 5 \). Given these values of \(k \) and \(\lambda \), we abbreviate

\[H_i(x) = H_{2,i}(a_1, a_2, a_3, a_4, a_5; x, q) \]

(2.7)

and

\[\sigma_i = \sigma_i \left(\frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3}, \frac{1}{a_4}, \frac{1}{a_5} \right). \]

(2.8)

The four instances of (2.4) with \(i = 2, 1, 0, -1 \) reduce to the following once we use (2.5) and (2.6) for simplification:

\[H_2(x) - H_1(x) - \sigma_3 x^2 q H_2(xq) + x^2 q \sigma_4 H_3(xq) - x^2 q \sigma_5 H_4(xq) = (x - x^2 q \sigma_2) H_1(xq); \]

(2.9)

\[H_1(x) - (1 - x^2 q^2 \sigma_4) H_2(xq) - x^2 q^2 \sigma_5 H_3(xq) = (-x q \sigma_1 + x^2 q^2 \sigma_3) H_1(xq); \]

(2.10)

\[H_1(x) + (x q \sigma_1 - x^3 q^3 \sigma_5) H_2(xq) - H_3(xq) = (x^2 q^2 \sigma_2 - x^3 q^3 \sigma_4) H_1(xq); \]

(2.11)

\[H_2(x) - x H_1(xq) - x^2 q \sigma_2 H_2(xq) + x q \sigma_1 H_3(xq) - H_4(xq) = (-x^3 q^3 \sigma_3 + x^4 q^4 \sigma_5) H_1(xq). \]

(2.12)

These four functional equations will be used in Section 3 to obtain the relevant second order \(q \)-difference equation for \(H_{2,1}(a_1, a_2, a_3, a_4, a_5; x, q) \).

3. The main results

Our next step consists of replacing \(x \) by \(xq \) in each of (2.9)–(2.12). We rewrite the resulting equations so that \(H_1(xq) \) and \(H_1(xq^2) \) appear on the right.
of each equation.

\begin{align}
 (3.1) \quad & H_2(xq) - \sigma_3 x^2 q^3 H_2(xq^2) + x^2 q^3 \sigma_4 H_3(xq^2) - x^2 q^3 \sigma_5 H_4(xq^2) \\
 & = H_1(xq) + (xq - x^2 q^3 \sigma_2) H_1(xq^2) ; \\
 (3.2) \quad & -(1 - x^2 q^4 \sigma_4) H_2(xq^2) - x^2 q^4 \sigma_5 H_3(xq^2) \\
 & = (-x^2 q^2 \sigma_1 + x^2 q^4 \sigma_3) H_1(xq^2) - H_1(xq) ; \\
 (3.3) \quad & (xq^2 \sigma_1 - x^3 q^6 \sigma_5) H_2(xq^2) - H_3(xq^2) \\
 & = (x^2 q^4 \sigma_2 - x^3 q^6 \sigma_4) H_1(xq^2) - H_1(xq) ; \\
 (3.4) \quad & H_2(xq) - x^2 q^4 \sigma_2 H_2(xq^2) + xq^2 H_3(xq^2) - H_4(xq^2) \\
 & = (-x^3 q^6 \sigma_3 + x^4 q^8 \sigma_5) H_1(xq^2).
\end{align}

Equations (2.9)-(2.12), (3.1)-(3.4) constitute a system of eight linear equations in the eight unknowns: \(H_1(x) \), \(H_2(x) \), \(H_2(xq) \), \(H_2(xq^2) \), \(H_3(xq) \), \(H_3(xq^2) \), \(H_4(xq) \), \(H_4(xq^2) \). The system turns out to be nonsingular, and consequently Cramer's Rule assisted by MACSYMA allows us to solve for \(H_1(x) \) which upon inspection reveals a linear relation among \(H_1(x) \), \(H_1(xq) \) and \(H_1(xq^2) \). To make this relation most succinct we introduce

\begin{align}
 p(x) &= p(x; \sigma_1, \sigma_4, \sigma_5, q) \\
 &= 1 - x^2 q^2 \sigma_4 + x^3 q^3 \sigma_1 \sigma_5 - x^5 q^5 \sigma_2.
\end{align}

Using this notation, we find that after simplification and division by \((-1 + x^2 q \sigma_5)\)

\begin{align}
 (3.6) \quad & Q(x) H_1(x) = P(x) H_1(xq) + R(x) H_1(xq^2), \\
 \text{where} \quad & Q(x) = (1 - x^2 q^2 \sigma_5)(1 - x^2 q^3 \sigma_5)p(xq), \\
 (3.7) \quad & P(x) = -xq(1 - x^2 q^3 \sigma_5)p(xq)(\sigma_1 - xq \sigma_3 + x^3 q^3 \sigma_2 \sigma_5 - x^4 q^4 \sigma_4 \sigma_5) \\
 & - p(x) \left\{ (-1 - xq \sigma_1 + x^3 q^4 \sigma_5)p(xq) \\
 & - x^6 q^{11} \sigma_2 \sigma_5 + x^5 q^9 \sigma_1 \sigma_4 \sigma_5 - x^5 q^9 \sigma_4 \sigma_5 + x^4 q^7 \sigma_3 \sigma_5 \\
 & + x^4 q^7 \sigma_2 \sigma_5 - x^4 q^7 \sigma_2^2 - x^3 q^5 \sigma_1 \sigma_5 + x^2 q^3 \sigma_4 - x^3 q^3 \sigma_3 + xq \sigma_1 \right\}, \\
 (3.8) \quad & R(x) = xq p(x) \prod_{1 \leq i < j \leq 5} \left(1 - \frac{xq^2}{a_i a_j} \right).
\end{align}

\textbf{Theorem 1.}

\begin{align}
 (3.10) \quad & \frac{H_1(x)}{H_1(xq)} = \frac{P(x)}{Q(x)} + \frac{R(x)/Q(x)}{P(xq)/Q(xq)} + \frac{R(xq)/Q(xq)}{P(xq^2)/Q(xq^2)} + \frac{R(xq^2)/Q(xq^2)}{P(xq^3)/Q(xq^3)} + \ldots.
\end{align}
Proof. This assertion is merely the iteration of a restatement of (3.6) written in the form

\[
\frac{H_1(x)}{H_1(xq)} = \frac{P(x)}{Q(x)} + \frac{R(x)/Q(x)}{H_1(xq)/Q(xq^2)}.
\]

Convergence is guaranteed by the fact that \(P(x), Q(x)\) and \(R(x)\) are polynomials in \(x\), \(Q(0) = 1\), and \(R(x)\) has no constant term. \(\square\)

Related contiguous relations and continued fractions may be derived from (3.6). For example, if we put \(a_5 = q^{-N}\) and let \(N \to \infty\) in (1.5) we find

\[
H_1(a_1, a_2, a_3, a_4; x; q)
\]

(3.12)

\[
= \left(\frac{xq}{a_1} \right)_\infty \left(\frac{xq}{a_2} \right)_\infty \left(\frac{xq}{a_3a_4} \right)_\infty \phi_2\left(\frac{xq}{a_1}, \frac{xq}{a_2}, \frac{xq}{a_3a_4}; a_3, a_4, xq \right).
\]

Making the change of variables

\[
x \mapsto \frac{de}{aq}, \quad a_1 \mapsto \frac{e}{a}, \quad a_2 \mapsto \frac{d}{a}, \quad a_3 \mapsto b, \quad a_4 \mapsto c,
\]

cancelling infinite products and simplifying the resulting polynomials give the following contiguous relation for a \(\phi_2\):

\[
S \phi_2\left(\frac{a}{d}, \frac{b}{e}, \frac{c}{f}; \frac{de}{abc} \right) = T \phi_2\left(\frac{aq}{dq}, \frac{bq}{eq}, \frac{cq}{eq}; \frac{de}{abc} \right)
\]

(3.13)

\[
+ U \phi_2\left(\frac{aq^2}{dq^2}, \frac{bq^2}{eq^2}, \frac{cq^2}{eq^2}; \frac{de}{abc} \right),
\]

where the polynomials \(S, T\) and \(U\) are

\[
S = bc(d)(e)(abc - de)(bc - deq^2),
\]

\[
T = (1 - dq)(1 - eq)(bc - deq)[bcde(a(b + c) + d + e)(1 + q) - ((b + c)de
\]

\[
+ abc(d + e))(bc + deq) + a(bc - de)(bc - deq^2)],
\]

\[
\]

Applying the transformation (3.2.7) of [5] term-by-term to the contiguous relation and simplifying the products yield

\[
S' \phi_2\left(\frac{a}{d}, \frac{b}{e}, \frac{c}{f}; \frac{de}{abc} \right) = T' \phi_2\left(\frac{aq}{dq}, \frac{bq}{eq}, \frac{cq}{eq}; \frac{de}{abc} \right)
\]

(3.14)

\[
= U' \phi_2\left(\frac{aq^2}{dq^2}, \frac{bq^2}{eq^2}, \frac{cq^2}{eq^2}; \frac{de}{abc} \right),
\]

where now

\[
S' = a^2b^2c^2(d)(e)(1 - eq^2),
\]

\[
T' = abc(1 - dq)(eq)(de(ab + ac + bc + e)(1 + q)
\]

\[
- d(abc + (a + b + c)e)(1 + eq)
\]

\[
+ abc(1 - e)(1 - eq^2)),
\]

\[
\]
Iterating these two contiguous relations gives

\[
3\phi_2 \left(\frac{a, b, c}{d, e}; \frac{de}{abc} \right) = \frac{T(a, d, e)}{S(a, d, e)} + \frac{U(a, d, e)}{T(aq, dq, eq)/S(aq, dq, eq) + \ldots}
\]

and

\[
3\phi_2 \left(\frac{a, b, c}{d, q}; \frac{de}{abc} \right) = \frac{T'(a, b, c, d, e)}{S'(a, b, c, d, e)} + \frac{U'(a, b, c, d, e)}{S'(aq, bq, cq, dq, eq^2)/S'(aq, bq, cq, dq, eq^2) + \ldots}
\]

For both continued fractions convergence follows from the fact that after canceling common factors of powers of \(q \) from the partial numerators and denominators, the partial numerators tend to zero, while the partial denominators do not.

Obviously, although Theorem 1 is explicit, it nonetheless lacks the elegance of (1.1) or (1.4). If we let \(a_4 \) and \(a_5 \) tend to infinity (so that \(a_4 = a_5 = 0 \)) and denote the resulting \(P(x) \), \(Q(x) \) and \(R(x) \) by \(P(x) \), \(Q(x) \) and \(R(x) \) respectively, then we see that

\[
Q(x) = 1,
\]
\[
R(x) = xq \left(1 - \frac{xq^2}{a_1a_2} \right) \left(1 - \frac{xq^2}{a_1a_3} \right) \left(1 - \frac{xq^2}{a_2a_3} \right),
\]
\[
P(x) = 1 - \frac{xq}{a_1} - \frac{xq}{a_2} - \frac{xq}{a_3} + \frac{x^2q^2}{a_1a_2a_3} (1 + q).
\]

Thus we obtain

Corollary 1.

\[
\frac{H_{2,1}(a_1, a_2, a_3; x; q)}{H_{2,1}(a_1, a_2, a_3; q; q)} = \frac{P(x)}{P(xq) + \frac{R(x)}{P(xq) + \frac{R(xq)}{P(xq^2) + \ldots}}}.
\]

Several remarks are now in order. First it is clear from (3.17)–(3.20) that (1.4) is the case \(a_1 = a_2 = a_3 = a_4 = a_5 = +\infty \). Also the form for the \(H_{k,i} \) given in (2.2) will yield the right-hand side of (1.3) and not the right-hand side of (1.2). However, for completeness, we note we may deduce from (2.2), (2.3) and (1.5) that

\[
H_{2,1}(a_1, a_2, a_3; x; q) = \left(\frac{xq}{a_1a_3} \right)_\infty \left(\frac{xq}{a_2} \right)_\infty \sum_{n=0}^\infty \frac{(a_1)_n(a_3)_n}{(a_1a_3)_n} \left(\frac{xq}{a_1a_3} \right)_n.
\]
A FULL EXTENSION OF THE ROGERS-RAMANUJAN CONTINUED FRACTION

and this last expression reduces to the right-hand side of (1.2) as \(a_1, a_2 \) and \(a_3 \to \infty \).

To conclude we examine the simplest case involving three finite parameters. We replace \(q \) by \(q^4 \) and then set \(a_1 = q, a_2 = q^2, a_3 = q^3 \) in Corollary 1. By (3.21) we see that

\[
\lim_{x \to 1^-} H_{2,1}(q, q^2, q^3; x; q^4) = \lim_{x \to 1^-} (x; q^4) \frac{(q, q^2)_{2n} x^n}{(q^4; q^4)_{n} (x q^2; q^4)_{n}} = (q; q^2)_{\infty},
\]

and if we define

\[
f(q) = H_{2,1}(q, q^2, q^3; q^4, q^4),
\]

then by (3.21) after simplification

\[
f(q) = \frac{(q^2; q^4)_{\infty}}{q(1-q)} \sum_{n=0}^{\infty} \frac{(q; q^2)_{2n+1} q^{2n+1}}{(q^4; q^4)_{n} (q^2; q^2)_{n+1}}
\]

and

\[
f(-q) = \frac{-(q^2; q^4)_{\infty}}{2q(1+q)} (-q)_{\infty} \sum_{n=1}^{\infty} (-1)^n q^{n^2}
\]

Hence by [3, p. 23, eq. (2.2.12)]

\[
f(-q) = \frac{-(q^2; q^4)_{\infty}}{2q(1+q)} (-q)_{\infty} 2 \sum_{n=1}^{\infty} (-1)^n q^{n^2} = (-q^3; q^2)_{\infty} \sum_{n=1}^{\infty} (-1)^n q^{n^2-1},
\]

and so

\[
H_{2,1}(q, q^2, q^3; q^4, q^4) = (q^3; q^2)_{\infty} \sum_{n=0}^{\infty} q^{n^2+2n}.
\]

Consequently Corollary 1 reduces to

\[
(3.22) \quad \frac{1-q}{\sum_{n=0}^{\infty} q^{n^2+2n}} = 1 - q - q^3 + q^6 + \frac{q^4(1-q^3)(1-q^4)(1-q^5)}{1-q^5-q^6-q^7+q^{10}+q^{14}+ \frac{q^8(1-q^7)(1-q^8)(1-q^9)}{1-q^9-q^{10}-q^{11}+q^{14}+q^{15}+}}.
\]
REFERENCES

DEPARTMENT OF MATHEMATICS, THE PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802

Current address, D. Bowman: Department of Mathematics, The University of Illinois, 1409 W. Green St., Urbana, Illinois 61801

E-mail address, G. E. Andrews: andrews@math.psu.edu

E-mail address, D. Bowman: bowman@symcom.math.uiuc.edu