Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The general local form of an analytic mapping into the set of idempotent elements of a Banach algebra


Author: J.-Ph. Labrousse
Journal: Proc. Amer. Math. Soc. 123 (1995), 3467-3471
MSC: Primary 46H05
DOI: https://doi.org/10.1090/S0002-9939-1995-1277122-7
MathSciNet review: 1277122
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives a general formula which describes any analytical mapping of a suitably small open neighborhood U in $ \mathbb{C}$ into the set of idempotent elements of any complex Banach algebra B and an application of this formula to the case when B is a Calkin algebra.


References [Enhancements On Off] (What's this?)

  • [1] E. Catalan, Note sur une équation aux différences finies, J. Math. Pure Appl. 3 (1838), 508-517.
  • [2] P. De La Harpe, Initiation à l'algèbre de Calkin, Lecture Notes in Math, vol. 725, Springer-Verlag, Berlin and New York, 1979, pp. 180-219. MR 548109 (80g:46002)
  • [3] J. H. van Lint and R. M. Wilson, A course in combinatorics, Cambridge Univ. Press, London and New York, 1992, pp. 116-117. MR 1207813 (94g:05003)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46H05

Retrieve articles in all journals with MSC: 46H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1277122-7
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society