THE TATE CONJECTURE FOR t-MOTIVES

YUICHIRO TAGUCHI

(Communicated by Eric Friedlander)

Abstract. A version of the Tate conjecture is proved for \(\varphi \)-modules of "t-motive type".

In this note, we formulate a version of the Tate conjecture for \(\varphi \)-modules, and give a proof of it in a special but essential case. Similar results have been obtained independently by Tamagawa [3] in a more general setting.

Let \(K \) be an algebraic function field in one variable over a finite field, whose field of constants is \(\mathbb{F}_q \), \(\pi \) a place of \(K \), and \(K_\pi \) the completion of \(K \) at \(\pi \). Let \(k \) be any field containing \(\mathbb{F}_q \). We set \(K_k := k \otimes_{\mathbb{F}_q} K \), and denote by \(K_k, \pi \) the completion of \(K_k \) with respect to the \(\pi \)-adic topology (these may not be fields). Let \(\sigma \) be the endomorphism \((q\text{-th power Frobenius of } k) \otimes (\text{id}_K)\) of \(K_k \), and also its natural extension to \(K_k, \pi \). By a \(\varphi \)-module \((M, \varphi)\) (or simply \(M \)) over \(K_k \) (resp. over \(K_k, \pi \)), we mean a free \(K_k \)-module (resp. \(K_k, \pi \)-module) \(M \) of finite rank equipped with a \(\sigma \)-semi-linear map \(\varphi : M \to M \). Morphisms of \(\varphi \)-modules are defined naturally. Tensor products \(M \otimes N \) (with diagonal \(\varphi \)-action) exist. Internal horns \(\text{Hom}(M, A) \) (with \(\varphi \)-action) may or may not exist. For a \(\varphi \)-module \(M \), let \(M^\varphi \) denote the fixed part of \(M \) by \(\varphi \). This is a \(K \)-subspace (resp. \(K_\pi \)-subspace) of \(M \). If the internal hom \(H = \text{Hom}(M, N) \) exists, then \(H^\varphi \) is the space \(\text{Hom}_\varphi(M, N) \) of \(\varphi \)-module homomorphisms of \(M \) to \(N \). Now the Tate conjecture in our context is

Conjecture. Let \(M \) be a \(\varphi \)-module over \(K_k \). If \(k \) is of finite type over \(\mathbb{F}_q \), then the natural map of \(K_\pi \)-vector spaces

\[
K_\pi \otimes_K M^\varphi \to (K_k, \pi \otimes_k M)^\varphi
\]

is an isomorphism.

In general, this is not true (cf. [3]).

Equivalently, by fixing a \(K_k \)-basis of \(M \), the conjecture can be stated also as follows: Let \(A \) be a matrix in \(M_r(K_k) \). Consider the linear Frobenius equation

\[
(*) \quad A X^\sigma = X
\]

Received by the editors April 28, 1994.

1991 Mathematics Subject Classification. Primary 11G09.

Partially supported by JSPS Postdoctoral Fellowships for Research Abroad.

©1995 American Mathematical Society

3285
where the indeterminate X is considered in $K_{k, \pi}^{\otimes r}$, on which σ acts component-wise. Let V (resp. V_π) be the space of solutions of (\(\ast\)) in $K_{k}^{\otimes r}$ (resp. $K_{k, \pi}^{\otimes r}$). Then the natural map of K_{π}-vector spaces $K_{\pi} \otimes_K V \rightarrow V_\pi$ is an isomorphism. These problems can (and should) be considered also with K_k replaced by certain localization of it.

The injectivity is easy to see, so the essence is in the surjectivity.

A reduction can be made: suppose K' is a subfield of K which contains \mathbb{F}_q and over which K is finite. Let π' be the restriction of π to K'. A φ-module M over K_k can be regarded as a φ-module over K'_k. If the conjecture is true for (K', π', M), then it is also true for (K, π, M) (use the identification $K_{\pi'} \otimes_{K'} K = \prod_{\pi | \pi'} K_{\pi}$, etc.). So we may and do assume $K = \mathbb{F}_q(t)$ and identify π with a monic irreducible element of $\mathbb{F}_q[t]$. Replacing K again by the subfield $\mathbb{F}_q(\pi)$, we may assume $\pi = t$ (so K_k is the polynomial ring $k[t]$ to which the inverses of all monic polynomials in $\mathbb{F}_q[t]$ have been adjoined, and $K_{k, \pi} = k((t))$).

Now we prove the conjecture assuming that k is a function field in one variable over \mathbb{F}_q (this is not essential) and that M comes from t-motives of characteristic different from π, by which we mean the following (cf. [1]): there exist a non-zero element θ of k and positive integers d and d' such that the map φ is represented with respect to some K_k-basis of M by a matrix A of the form

$$A = (t - \theta)^d B^{-1},$$

where B is a matrix in $M_r(k[t])$ with $\det B$ of the form $u(t - \theta)^{d'}$, $u \in k^\times$ (so we allow any $A \in \text{GL}_r(k[t], \frac{1}{t-\theta})$ in (\(\ast\)), which may not be in $M_r(K_k)$).

We will show that, if the equation (\(\ast\)) has a solution \hat{x} in $K_{k, \pi}^{\otimes r}$, then it has a solution x in $K_{k}^{\otimes r}$ which is sufficiently close (in the t-adic= π-adic topology) to \hat{x} (so that, if (\hat{x}_i) is a basis for V_π, so is (x_i) for V). By assumption, we have

$$(\ast\ast) \quad (t - \theta)^d \hat{x}^\sigma = B \hat{x}, \quad \theta \neq 0.$$

Write $(t - \theta)^d = \sum_{i=0}^d \theta^i t^i$ (with $\theta^i \in k$); $B = \sum_{i=0}^N B_it^i$ (with $B_i \in M_r(k)$); and $\hat{x} = \sum_{i \geq 0} x_it^i$ (with $x_i \in k^{\otimes r}$). Then (\(\ast\ast\)) yields

$$(\ast\ast\ast) \quad \theta^0 x_0^\sigma + \cdots + \theta_d x_d^\sigma = B_0 x_0 + \cdots + B_N x_{-N}, \quad i \geq 0.$$

(Here negatively indexed terms are zero.) For any valuation v of k, let $v(x_i)$ denote the minimum of the valuations of the entries of x_i, and $v(B)$ the minimum of the valuations of the entries of B_i for all $i \geq 0$. If $v(\theta) \leq 0$, then

$$v(x_i) \geq \min\{v(x_{i-1}), \cdots, v(x_{i-d}), \frac{v(x_i) + v(B)}{q}, \cdots, \frac{v(x_{i-N}) + v(B)}{q}\},$$

so we see recursively that $v(x_i) \geq v(B)/(q - 1)$ for all $i \geq 0$. If $v(\theta) > 0$, we replace X in (\(\ast\ast\)) by $\theta^{-e} X$ (resp. B by $\theta^{e(q-1)}B$) for some e to have $v(\theta^{e(q-1)}B) \geq 0$. Then Anderson's arguments\(^1\) in §4 of [2] imply the

\(^1\)His arguments there show in particular the following: let \mathcal{O} be the integer ring of the completion k_v of k at the place v. Let B be a matrix in $M_r(\mathcal{O}[t])$ such that $\det B = u(t - \theta)^{d'}$ with a non-zero $u \in \mathcal{O}$. Then any solution X to the equation $(t - \theta)^d X^\sigma = BX$ in $k_v[t][\mathcal{O}]^{\otimes r}$ is

holomorphy of the new solution $\theta^e \hat{x}$, hence the old solution \hat{x} satisfies $v(x_i) \geq -ev(\theta)$ for all $i \geq 0$. Thus the values $v(x_i), i \geq 0$, are bounded below for all valuations v of k, by constants which are non-negative for almost all v. By the bounded height theorem, there appear in fact only finitely many x_i's in the sequence x_0, x_1, \ldots. Accordingly, there appear only finitely many equations (***) and one can choose a "periodic" (except for finitely many terms) solution $\hat{x} = \sum x_i t^i$ in $K^{\text{br}}_{k_{\pi}}$ to (***) closely enough to the original \hat{x}. Periodicity implies that \hat{x} is rational with denominator in $\mathbb{F}_q[t]$, hence $\hat{x} \in K^{\text{br}}_{k}$.

Acknowledgment

I thank Greg Anderson for a careful reading of the manuscript and helpful comments. I also thank Akio Tamagawa for his encouragement, and the Institute for Advanced Study for its hospitality.

References

Tokyo Metropolitan University, Hachioji, Tokyo 192-03, Japan
E-mail address: taguchi@math.metro-u.ac.jp

automatically in $\mathcal{O}_\ell^\text{br}$. (The proof is found in the last page of [2], except that we need to use his Lemma 7 for a more general $\Phi = B$ as above, with the maximal ideal \mathcal{M}^{sep} in the statement replaced by the integer ring \mathcal{O}^{sep} of a separable closure of k_v. This can be proved easily by looking at each term of the t-adic expansion of the given equation, just as we did in (***)�)