ALGEBRAIC AND TRIANGULAR n-HYPONORMAL OPERATORS

EUNGIL KO

(Communicated by Palle E. T. Jorgensen)

Abstract. In this paper we shall prove that if an operator $T \in \mathcal{L}(\mathfrak{D}^n H)$ is a finite triangular operator matrix with hyponormal operators on main diagonal, then T is subscalar. As corollaries we get the following:

1. Every algebraic operator is subscalar.
2. Every operator on a finite-dimensional complex space is subscalar.
3. Every triangular n-hyponormal operator is subscalar.

1. Introduction

Let H and K be separable, complex Hilbert spaces and $\mathcal{L}(H, K)$ denote the space of all linear, bounded operators from H to K. If $H = K$, we write $\mathcal{L}(H)$ in place of $\mathcal{L}(H, K)$. An operator T in $\mathcal{L}(H)$ is called hyponormal if $TT^* \leq T^*T$ or, equivalently, if $\|T^*h\| \leq \|Th\|$ for each h in H.

A linear bounded operator S on H is called scalar of order m if it possesses a spectral distribution of order m, i.e., if there is a continuous unital morphism of topological algebras

$$\Phi: C_0^m(C) \to \mathcal{L}(H)$$

such that $\Phi(z) = S$, where as usual z stands for the identity function on C and $C_0^m(C)$ stands for the space of compactly supported functions on C, continuously differentiable of order m, $0 \leq m \leq \infty$. An operator is subscalar if it is similar to the restriction of a scalar operator to a closed invariant subspace.

This paper is divided into four sections. Section 2 deals with some preliminary facts. In section 3, we shall state the Putinar theorem. In section 4, we shall prove our main theorem and several corollaries.

2. Preliminaries

An operator $T \in \mathcal{L}(H)$ is said to satisfy the single-valued extension property if for any open subset U in C, the function

$$z - T: O(U, H) \to O(U, H)$$

defined by the obvious pointwise multiplication is one-to-one where $O(U, H)$ denotes the Fréchet space of H-valued analytic functions on U with respect to

Received by the editors March 2, 1994 and, in revised form, June 13, 1994; the results of this paper were delivered in a talk at the Korean Mathematical Society Spring Conference in April 1994.

1991 Mathematics Subject Classification. Primary 47B20; Secondary 47B38.

The author was partially supported by GARC.

©1995 American Mathematical Society

3473
uniform topology. If, in addition, the above function \(z - T \) has closed range on \(O(U, H) \), then \(T \) satisfies the Bishop's condition (\(\beta \)).

In other terms, condition (\(\beta \)) means that, for any open set \(U \) and any sequence of analytic functions \(f_n \in O(U, H) \), \(\lim_{n \to \infty} f_n = 0 \) in \(O(U, H) \) whenever \(\lim_{n \to \infty} (z - T)f_n = 0 \). In particular, \((z - T)g = 0 \) if and only if \(g = 0 \), where \(g \in O(U, H) \).

2.1 Lemma ([MP], Theorem 5.5). Every hyponormal operator has property (\(\beta \)).

Let \(z \) be the coordinate in the complex plane \(C \), and let \(d\mu(z) \), or simply \(d\mu \), denote the planar Lebesgue measure. Fix a complex (separable) Hilbert space \(H \) and a bounded (connected) open subset \(U \) of \(C \). We shall denote by \(L^2(U, H) \) the Hilbert space of measurable functions \(f: U \to H \), such that

\[
\|f\|_{2,U} = \left(\int_U \|f(z)\|^2 d\mu(z) \right)^{1/2} < \infty.
\]

The space of functions \(f \in L^2(U, H) \) which are analytic functions in \(U \) (i.e., \(\overline{\partial}f = 0 \)) is denoted by

\[
A^2(U, H) = L^2(U, H) \cap O(U, H).
\]

\(A^2(U, H) \) is called the Bergman space for \(U \). Note that \(A^2(U, H) \) is complete (i.e., \(A^2(U, H) \) is a Hilbert space).

Let \(P \) denote the orthogonal projection of \(L^2(U, H) \) onto \(A^2(U, H) \). Let \(L^\infty(U, H) \) denote the Banach space of essentially bounded \(H \)-valued functions on \(U \). Let \(\overline{U} \) be the closure in \(C \) of the open set \(U \), and let \(C^p(\overline{U}, H) \) denote the space of continuously differentiable functions on \(\overline{U} \) of order \(p \), \(0 \leq p \leq \infty \).

Cauchy-Pompeiu formula. For a bounded disk \(D \),

\[
f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(s)}{s - z} ds - \frac{1}{\pi} \int_D \overline{\partial} f(s) d\mu(s)
\]

where \(z \in D \) and \(f \in C^2(\overline{D}, H) \).

Remark. The function \(g(z) = \int_{\partial D} \frac{f(s)}{s - z} d\mu(s) \) appearing in the Cauchy-Pompeiu formula is analytic in \(D \) and continuous on \(\overline{D} \), in particular \(g \in A^2(D, H) \) for \(f \in C^2(\overline{D}, H) \).

Let us now define a special Sobolev type space. Let \(U \) again be a bounded open subset of \(C \) and \(m \) be a fixed non-negative integer. The vector-valued Sobolev space \(W^m(U, H) \) with respect to \(\overline{\partial} \) and of order \(m \) will be the space of those functions \(f \in L^2(U, H) \) whose derivatives \(\overline{\partial} f, \ldots, \overline{\partial}^m f \) in the sense of distributions still belong to \(L^2(U, H) \). Endowed with the norm

\[
\|f\|_{W^m} = \sum_{i=0}^m \|\overline{\partial}^i f\|_{2,U}^2
\]

\(W^m(U, H) \) becomes a Hilbert space contained continuously in \(L^2(U, H) \).

Let \(U \) be a (connected) bounded open subset of \(C \), and let \(m \) be a non-negative integer. The linear operator \(M \) of multiplication by \(z \) on \(W^m(U, H) \) is continuous and has a spectral distribution of order \(m \), defined by the relation

\[
\Phi_M: C_0^m(C) \to \mathcal{L}(W^m(U, H)), \quad \Phi_M(f) = Mf.
\]
Therefore, M is a scalar operator of order m. Let

$$V : W^m(U, H) \to \bigoplus_0^m L^2(U, H)$$

be the operator $V(f) = (f, z^2 f, \ldots, z^m f)$. Then V is an isometry such that $VM_z = (\bigoplus_0^m M_z) V$. Therefore, M_z is a subnormal operator.

3. PUTINAR’S THEOREM

Let T be in $S(H)$. Then for a given open bounded subset D of \mathbb{C}, $z - T$ acts (linearly and) continuously on the space $W^2(D, H)$.

3.1 Lemma ([Pu], Lemma 1.1). If U and V are bounded connected open sets in \mathbb{C}, and if V is relatively compact in U, then there is a constant $c > 0$, such that

$$\|f\|_{L^\infty(U)} \leq c \|f\|_{L^2(V)}$$

for every f in $A^2(U, H)$.

3.2 Proposition ([Pu], Proposition 2.1). For a bounded disk D in complex plane there is a constant C_D, such that for an arbitrary operator T in $S(H)$ and f in $W^2(D, H)$ we have

$$\|(I - P)f\|_{L^2(D)} \leq C_D (\|(z - t)^* \bar{\partial} f\|_{L^2(D)} + \|(z - T)^* \partial^2 f\|_{L^2(D)})$$

where P denotes the orthogonal projection of $L^2(D, H)$ onto the Bergman space $A^2(D, H)$.

3.3 Corollary ([Pu], Corollary 2.2). If T is hyponormal, then

$$\|(I - P)f\|_{L^2(D)} \leq C_D (\|(z - T)^* \partial f\|_{L^2(D)} + \|(z - T)^* \partial^2 f\|_{L^2(D)}).$$

3.4 Theorem ([Pu], Theorem 1). Any hyponormal operator is subscalar of order 2.

Proof. Let T be a hyponormal operator on the Hilbert space H. Consider an arbitrary bounded open subset D of \mathbb{C} and the quotient space

$$H(D) = \frac{W^2(D, H)}{\text{cl}(z - T) W^2(D, H)}$$

endowed with the Hilbert space norm. The class of a vector f or an operator A on this quotient will be denoted by \tilde{f}, respectively \tilde{A}.

Note that M, the operator of multiplication by z on $W^2(D, H)$, leaves invariant $\text{ran}(z - T)$, hence \tilde{M} is well defined.

On the other hand, the map

$$\Phi : C_0^2(\mathbb{C}) \to S(W^2(D, H)), \quad \Phi(f) = M_f$$

is a spectral distribution for M, of order 2. Thus the operator M is C^2-scalar. Since $\text{ran}(z - T)$ is invariant under every operator M_f, $f \in C_0^2(\mathbb{C})$, we infer that \tilde{M} is a C^2-scalar operator with spectral distribution Φ.

Define

$$V : H \to \frac{W^2(D, H)}{\text{cl}(z - T) W^2(D, H)}$$
by $V(h) = 1 \otimes h$ where $1 \otimes h$ denotes the constant h. Then

$$VT = \widetilde{M}V.$$

Indeed, $VTh = (1 \otimes Th)^\sim = (z \otimes h)^\sim = \widetilde{M}(1 \otimes h)^\sim = \widetilde{M}Vh$. In particular ran$V$ is an invariant subspace for \widetilde{M}. In order to conclude the proof of this theorem, it is enough to show the following lemma.

3.5 Lemma ([Pu], Lemma 2.3). Let D be a bounded disk which contains $\sigma(T)$. Then the operator V is one-to-one and has closed range.

Proof. We have to prove the following assertion: If h_n in \mathcal{H} and f_n in $W^2(D, \mathcal{H})$ are sequences such that

$$\lim_{n \to \infty} \|(z-T)f_n + h_n\|_{W^2} = 0,$$

then $\lim_{n \to \infty} h_n = 0$. The assumption (1) implies

$$\lim_{n \to \infty} \|(z-T)\overline{\partial}f_n\|_{2,D} + \|(z-T)\overline{\partial}^2f_n\|_{2,D} = 0.$$

By Corollary 3.3,

$$\lim_{n \to \infty} \|(I-P)f_n\|_{2,D} = 0.$$

Then by (1),

$$\lim_{n \to \infty} \|(z-T)Pf_n + h_n\|_{2,D} = 0.$$

Let Γ be a curve in D surrounding $\sigma(T)$. Then for $z \in \Gamma$

$$\lim_{n \to \infty} \|Pf_n(z) + (z-T)^{-1}h_n\| = 0$$

uniformly by the preceding consequence of Proposition 3.2. Hence,

$$\left\| \frac{1}{2\pi i} \int_{\Gamma} Pf_n(z) dz + h_n \right\| \to 0.$$

But $\int_{\Gamma} Pf_n dz = 0$. Hence, $\lim_{n \to \infty} h_n = 0$. □

4. Main theorems

In this section, we shall prove that every algebraic and triangular n-hyponormal operator is subscalar.

4.1 Definition. An operator $T \in \mathcal{L}(\mathcal{H})$ is algebraic if there is a non-zero polynomial p such that $p(T) = 0$.

4.2 Definition. An operator $T \in \mathcal{L}(\mathcal{H})$ is nilpotent if $T^n = 0$ for some integer n.

4.3 Proposition. Every nilpotent operator is an algebraic operator.

An interesting characterization of algebraic operators was given by P. R. Halmos.
4.4 **Theorem** ([Ha]). If T is an algebraic operator and p is a polynomial of minimal degree n such that $p(T) = 0$, then T is unitarily equivalent to a finite operator matrix of the form

$$
\begin{pmatrix}
\alpha_1 & T_{12} & \cdots & \cdots & T_{1n} \\
0 & \alpha_2 & T_{23} & \cdots & \cdots \\
\vdots & \vdots & \ddots & \cdots & \cdots \\
\vdots & \vdots & \cdots & \alpha_{n-1} & T_{n-1,n} \\
0 & \cdots & \cdots & 0 & \alpha_n
\end{pmatrix}
$$

where α_i are the roots of the polynomial p.

The following theorem will be proved in this paper.

4.5 **Theorem.** If an operator $T \in \mathcal{L}(\bigoplus_1^n H)$ is a finite operator matrix of the form

$$
T = \begin{pmatrix}
T_{11} & T_{12} & \cdots & \cdots & T_{1n} \\
0 & T_{22} & T_{23} & \cdots & \cdots \\
\vdots & \vdots & \ddots & \cdots & \cdots \\
\vdots & \vdots & \cdots & T_{n-1,n-1} & T_{n-1,n} \\
0 & \cdots & \cdots & 0 & T_{nn}
\end{pmatrix}
$$

where $T_{i,i}$ are hyponormal for $i = 1, 2, \ldots, n$, then T is a subscalar operator of order $2n$.

Proof. Consider an arbitrary bounded open subset D of \mathbb{C} which contains $\sigma(T)$ and the quotient space

$$
H(D) = \frac{\oplus_0^n W^{2n}(D, H)}{\text{cl}(T - z) \oplus_0^n W^{2n}(D, H)}
$$

endowed with the Hilbert space norm. Let M_z be the multiplication operator with z on $W^{2n}(D, H)$. Then $\oplus_1^n M_z$ is a C^{2n}-scalar subnormal operator and its spectral distribution is

$$
\Phi: \bigoplus_1^n C_0^{2n}(C) \to \mathcal{L}(\bigoplus_1^n W^{2n}(D, H)), \quad \Phi \bigoplus_1^n f_i = \bigoplus_1^n M_{f_i}.
$$

Since M_z commutes with $M_{T - z}$, $\bigoplus_1^n \widetilde{M}_z$ is still a scalar operator of order $2n$, with Φ as spectral distribution.

Let $\bigoplus_1^n V$ be the operator

$$
\bigoplus_1^n V)(\bigoplus_1^n h_i) = (1 \otimes h_1, \ldots, 1 \otimes h_n)^t + (T - z) \otimes_1^n W^{2n}(D, H),
$$

from $\bigoplus_1^n H$ into $H(D)$, denoting by $(1 \otimes h_1, \ldots, 1 \otimes h_n)^t$ the constant function $\bigoplus_1^n h_i$. Then

$$
\bigoplus_1^n V)T = (\bigoplus_1^n \widetilde{M}_z)(\bigoplus_1^n V)
$$

In particular, $\text{ran}(\bigoplus_1^n V)$ is an invariant subspace for $\bigoplus_1^n \widetilde{M}_z$. In order to conclude the proof of this theorem, it is enough to show Lemma 4.6.

4.6 **Lemma.** Let D be a bounded disk which contains $\sigma(T)$. Then the operator $\bigoplus_1^n V: \bigoplus_1^n H \to H(D)$ is one-to-one and has closed range.
Proof of Lemma 4.6. Let $\bigoplus_i^n h_i^k \in \bigoplus_i^n H$ and $\bigoplus_i^n f_i^k \in \bigoplus_i^n W^{2n}(D, H)$ be sequences (in k) such that

$$\lim_{k \to \infty} \| (T - z) \bigoplus_i^n f_i^k + \bigoplus_i^n (1 \otimes h_i^k) \|_{\bigoplus_i^n W^{2n}} = 0.$$

It suffices to show that $\lim_{k \to \infty} \bigoplus_i^n h_i^k = 0$. The limit given directly above can be written as

$$\lim_{k \to \infty} \| (T_{11} - z) f_1^k + T_{12} f_2^k + \cdots + T_{1n} f_n^k + 1 \otimes h_1^k \|_{W^{2n}} = 0,$$

$$\vdots$$

$$\lim_{k \to \infty} \| (T_{j,j} - z) f_j^k + T_{j,j+1} f_{j+1}^k + \cdots + T_{j,n} f_n^k + 1 \otimes h_j^k \|_{W^{2n}} = 0,$$

$$\vdots$$

$$\lim_{k \to \infty} \| (T_{n,n} - z) f_n^k + 1 \otimes h_n^k \|_{W^{2n}} = 0.$$

In order to prove Lemma 4.6 we need the following:

Fact. For $t = 1, 2, 3, \ldots, n$,

$$(1,1) \quad \lim_{k \to \infty} \| (T_{11} - z) f_1^k + T_{12} f_2^k + \cdots + T_{1t} f_t^k + 1 \otimes h_1^k \|_{W^{2n}} = 0,$$

$$\vdots$$

$$(1,j) \quad \lim_{k \to \infty} \| (T_{j,j} - z) f_j^k + T_{j,j+1} f_{j+1}^k + \cdots + T_{j,t} f_t^k + 1 \otimes h_j^k \|_{W^{2n}} = 0,$$

$$\vdots$$

$$(1,t) \quad \lim_{k \to \infty} \| (T_{t,t} - z) f_t^k + 1 \otimes h_t^k \|_{W^{2n}} = 0.$$

We prove this fact by induction. We assume that Lemma 4.7 holds for some given $t = 2, 3, \ldots, n$. We only need to verify that

$$\lim_{k \to \infty} \| (T_{11} - z) f_1^k + T_{12} f_2^k + \cdots + T_{1,t-1} f_{t-1}^k + 1 \otimes h_1^k \|_{W^{2(t-1)}} = 0,$$

$$\vdots$$

$$\lim_{k \to \infty} \| (T_{t-1,t-1} - z) f_{t-1}^k + 1 \otimes h_{t-1}^k \|_{W^{2(t-1)}} = 0.$$

However the reader will note that this result follows directly from $(1, 1), \ldots, (1, t)$ provided $\lim_{k \to \infty} \| \partial_i f_i^k \|_{2,D} = 0$ for $i = 0, 1, \ldots, 2(t-1)$. So this will be shown to be true.

Claim 1. $\lim_{k \to \infty} h_i^k = 0$.

The proof of Lemma 3.5 suitably modified to include the higher order partials with $T = T_{t,t}$ shows the claim to be true.

Claim 2. $\lim_{k \to \infty} \| (I - P) \partial_i f_i^k \|_{2,D} = 0$ for $i = 0, \ldots, 2(t-1)$.

By Claim 1 and the equation $(1, t)$, $\lim_{k \to \infty} \| (T_{t,t} - z) f_t^k \|_{W^{2t}} = 0$. Then
we can apply Proposition 3.2 and Corollary 3.3 with $T = T_{i,t}$. In fact,
\[
\| (I - P)(f^{rk}_{t}, \overline{\partial} f^{i}_{t}, \ldots, \overline{\partial}^{2t-2} f^{i}_{t}) \|_{2,D} \\
\leq C_D \| (T_{i,t} - z)^{(\overline{\partial} f^{i}_{t}, \ldots, \overline{\partial}^{2t} f^{i}_{t})} \|_{2,D} \\
+ \| (T_{i,t} - z)^{(\overline{\partial}^{2} f^{i}_{t}, \ldots, \overline{\partial}^{2(t-1)} f^{i}_{t})} \|_{2,D} \\
\leq C_D \| (T_{i,t} - z)(\overline{\partial} f^{i}_{t}, \ldots, \overline{\partial}^{2t} f^{i}_{t}) \|_{2,D} \\
+ \| (T_{i,t} - z)(\overline{\partial}^{2} f^{i}_{t}, \ldots, \overline{\partial}^{2(t-1)} f^{i}_{t}) \|_{2,D},
\]
where P denotes the orthogonal projection of $\bigoplus_{2t-1} L^2(D, H)$ onto the Bergman space $\bigoplus_{2t-1} A^2(D, H)$. Thus Claim 2 follows from (1, t).

By Claim 2, for $i = 0, 1, \ldots, 2(t-1)$
\[
\lim_{k \to \infty} \|(T_{i,t} - z)\overline{\partial} f^{i}_{t} - (T_{i,t} - z)P\overline{\partial} f^{i}_{t} \|_{2,D} = 0.
\]
From (1, t),
\[
\lim_{k \to \infty} \|(T_{i,t} - z)P\overline{\partial} f^{i}_{t} \|_{2,D} = 0
\]
for $i = 0, 1, \ldots, 2(t-1)$. Since every hyponormal operator has property (β) by Lemma 2.1, for $i = 0, 1, \ldots, 2(t-1)$, $P\overline{\partial} f^{i}_{t} \to 0$ uniformly on compact subsets of D.

Consider $\sigma(T) \subset B(0, r) \subset \overline{B(0, r)} \subset D$. For $i = 0, 1, \ldots, 2(t-1)$,
\[
\|P\overline{\partial} f^{i}_{t} \|_{2,D}^2 = \int_{D} \|P\overline{\partial} f^{i}_{t}(z)\|^2 d\mu(z) \\
= \int_{D \setminus B(0, r)} \|P\overline{\partial} f^{i}_{t}(z)\|^2 d\mu(z) = \int_{D \setminus B(0, r)} \|P\overline{\partial} f^{i}_{t}(z)\|^2 d\mu(z).
\]
By property (β), the first integral converges to 0. Since $T - z$ is invertible on $D \setminus B(0, r)$, the second integral also converges to 0. Therefore,
\[
\lim_{k \to \infty} \|P\overline{\partial} f^{i}_{t} \|_{2,D} = 0.
\]
From Claim 2, we get $\lim_{k \to \infty} \|\overline{\partial} f^{i}_{t} \|_{2,D} = 0$ for $i = 0, 1, \ldots, 2(t-1)$. So this completes the proof of the fact stated above.

Let us come back now to the proof of Lemma 4.6. By the fact, we get the equation
\[
\lim_{k \to \infty} \|(T_{11} - z)f^{k}_{1} + 1 \otimes h^{k}_{1} \|_{W_2} = 0.
\]
By the application of Lemma 3.5 with $T = T_{11}$, we get $\lim_{k \to \infty} h^{k}_{1} = 0$. Since $\lim_{k \to \infty} h^{k}_{j} = 0$ for $j = 1, \ldots, n$, $\lim_{k \to \infty} h^{k} = 0$ where $h^{k} = (h^{k}_{1}, \ldots, h^{k}_{n})$. Thus $\bigoplus_{\alpha} V$ is one-to-one and has closed range. \Box

This also concludes the proof of Theorem 4.5, because $\text{ran}(\bigoplus_{\alpha} V)$ is a closed invariant subspace for the scalar operator $(\bigoplus_{\alpha} M_{z})$. \Box

4.8 Corollary. If T is an algebraic operator, then T is a subscalar operator.
Proof. It is clear from Theorem 4.4 and Theorem 4.5. \Box
4.9 **Corollary.** Every operator on a finite-dimensional complex space is subscalar.

4.10 **Definition.** An operator $T \in \mathcal{L}(H)$ is said to have property (α) if for every (not necessarily strict) contraction A, every operator X with dense range such that $XA = TX$, and every h in H, there exists a non-zero polynomial p such that $p(T)h \in \text{ran } X$.

4.11 **Lemma** ([ABFP], Proposition 3.9). If a strict contraction T (i.e., $\|T\| < 1$) has the property (α), then T is an algebraic operator.

4.12 **Corollary.** If a strict contraction T has property (α), then T is subscalar.

4.13 **Corollary.** If $A \prec T$ and T is algebraic, then A is subscalar.

Proof. By hypothesis, we can show A is algebraic. □

Remark. Let

$$B = \begin{pmatrix} 0 & T \\ 0 & 0 \end{pmatrix}$$

where T is hyponormal. Then B is a non-hyponormal, but B is a subscalar operator of order 4.

4.14 **Definition.** An operator T in $\mathcal{L}(\bigoplus_1^n H)$ is said to be a triangular n-hyponormal operator if

$$T = \begin{pmatrix} T_{11} & T_{12} & \cdots & \cdots & T_{1n} \\ 0 & T_{22} & \cdots & \cdots \\ \vdots & \vdots & \ddots & \cdots \\ \cdots & \cdots & \cdots & T_{n-1,n-1} & T_{n-1,n} \\ \cdots & \cdots & \cdots & 0 & T_{nn} \end{pmatrix}$$

where (T_{ij}) are commuting hyponormal operators on H.

4.15 **Corollary.** Let T be a triangular n-hyponormal operator. Then T is a subscalar operator.

4.16 **Question.** Let

$$T = \begin{pmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \end{pmatrix}$$

where $\{T_i\}$ are commuting hyponormal operators. Is T subscalar?

ACKNOWLEDGMENT

The author wishes to thank Professor Scott W. Brown for his considerable guidance.

REFERENCES

Global Analysis Research Center, Department of Mathematics, Seoul National University, Seoul 151-742, Korea