Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On an elliptic equation with concave and convex nonlinearities


Authors: Thomas Bartsch and Michel Willem
Journal: Proc. Amer. Math. Soc. 123 (1995), 3555-3561
MSC: Primary 35J65; Secondary 58E05
DOI: https://doi.org/10.1090/S0002-9939-1995-1301008-2
MathSciNet review: 1301008
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the semilinear elliptic equation $ - \Delta u = \lambda \vert u{\vert^{q - 2}}u + \mu \vert u{\vert^{p - 2}}u$ in an open bounded domain $ \Omega \subset {\mathbb{R}^N}$ with Dirichlet boundary conditions; here $ 1 < q < 2 < p < {2^ \ast }$. Using variational methods we show that for $ \lambda > 0$ and $ \mu \in \mathbb{R}$ arbitrary there exists a sequence $ ({v_k})$ of solutions with negative energy converging to 0 as $ k \to \infty $. Moreover, for $ \mu > 0$ and $ \lambda $ arbitrary there exists a sequence of solutions with unbounded energy. This answers a question of Ambrosetti, Brézis and Cerami. The main ingredient is a new critical point theorem, which guarantees the existence of infinitely many critical values of an even functional in a bounded range. We can also treat strongly indefinite functionals and obtain similar results for first-order Hamiltonian systems.


References [Enhancements On Off] (What's this?)

  • [1] A. Ambrosetti, H.Brézis, and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519-543. MR 1276168 (95g:35059)
  • [2] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. MR 0370183 (51:6412)
  • [3] T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal. T.M.A. 20 (1993), 1205-1216. MR 1219237 (94g:35093)
  • [4] -, Topological methods for variational problems with symmetries, Lecture Notes in Math., vol. 1560, Springer, Berlin and Heidelberg, 1993. MR 1295238 (96a:58078)
  • [5] T. Bartsch and M. Willem, Periodic solutions of non-autonomous Hamiltonian systems with symmetries, J. Reine Angew. Math. 451 (1994), 149-159. MR 1277297 (95i:58039)
  • [6] V. Benci, On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc. 274 (1982), 533-572. MR 675067 (84c:58014)
  • [7] J. Garcia Azorero and I. Peral Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc. 323 (1991), 877-895. MR 1083144 (91g:35108)
  • [8] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986. MR 845785 (87j:58024)
  • [9] M. Willem, Lectures in critical point theory, Trabalho de Mat. 199, Fundaçao Univ. Brasilia, Brasilia, 1983.
  • [10] -, Un lemme de déformation quantitatif en calcul des variations, Recherches Mathématiques 19, Université Catholique de Louvain, Louvain-la-Neuve, 1992.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35J65, 58E05

Retrieve articles in all journals with MSC: 35J65, 58E05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1301008-2
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society