Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Uniqueness of positive solutions of nonlinear second-order equations


Author: Robert Dalmasso
Journal: Proc. Amer. Math. Soc. 123 (1995), 3417-3424
MSC: Primary 34B15; Secondary 34A12
DOI: https://doi.org/10.1090/S0002-9939-1995-1301018-5
MathSciNet review: 1301018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the uniqueness question of positive solutions of the two-point boundary value problem: $ u''(t) + f(\vert t\vert,u(t)) = 0, - R < t < R,u( \pm R) = 0$ where $ R > 0$ is fixed and $ f:[0,R] \times [0,\infty ) \to \mathbb{R}$ is in $ {C^1}([0,R] \times [0,\infty ))$. A uniqueness result is proved when f satisfies some appropriate conditions. Some examples illustrating our theorem are also given.


References [Enhancements On Off] (What's this?)

  • [1] R. Dalmasso, Uniqueness of positive and nonnegative solutions of nonlinear equations, Funkcial. Ekvac. 37 (1994), 461-482. MR 1311555 (97c:34037)
  • [2] D. De Figueiredo, P.-L. Lions, and R. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl. (9) 61 (1982), 41-63. MR 664341 (83h:35039)
  • [3] B. Gidas, W.-M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. MR 544879 (80h:35043)
  • [4] A. Granas, R. B. Guenther, and J. W. Lee, Nonlinear boundary value problems for ordinary differential equations, Dissertationes Math. (Rozprawy Mat.) 244 (1985). MR 808227 (87a:34025)
  • [5] P. Hartman, Ordinary differential equations, Wiley, New York, 1964. MR 0171038 (30:1270)
  • [6] M. Krasnoselskii, Positive solutions of operator equations, Noordhoff, Groningen, 1964. MR 0181881 (31:6107)
  • [7] M. K. Kwong, Uniqueness of positive solutions of $ \Delta u - u + {u^p} = 0$ in $ {\mathbb{R}^n}$, Arch. Rational Mech. Anal. 105 (1989), 243-266. MR 969899 (90d:35015)
  • [8] P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), 441-467. MR 678562 (84a:35093)
  • [9] W.-M. Ni and R. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $ \Delta u + f(u,r) = 0$, Comm. Pure Appl. Math 38 (1985), 69-108. MR 768105 (86d:35055)
  • [10] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986. MR 845785 (87j:58024)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34B15, 34A12

Retrieve articles in all journals with MSC: 34B15, 34A12


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1301018-5
Keywords: Two-point boundary value problem, positive solutions, uniqueness
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society