Uniqueness of positive solutions of nonlinear second-order equations

Author:
Robert Dalmasso

Journal:
Proc. Amer. Math. Soc. **123** (1995), 3417-3424

MSC:
Primary 34B15; Secondary 34A12

MathSciNet review:
1301018

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the uniqueness question of positive solutions of the two-point boundary value problem: where is fixed and is in . A uniqueness result is proved when *f* satisfies some appropriate conditions. Some examples illustrating our theorem are also given.

**[1]**Robert Dalmasso,*Uniqueness of positive and nonnegative solutions of nonlinear equations*, Funkcial. Ekvac.**37**(1994), no. 3, 461–482. MR**1311555****[2]**D. G. de Figueiredo, P.-L. Lions, and R. D. Nussbaum,*A priori estimates and existence of positive solutions of semilinear elliptic equations*, J. Math. Pures Appl. (9)**61**(1982), no. 1, 41–63. MR**664341****[3]**B. Gidas, Wei Ming Ni, and L. Nirenberg,*Symmetry and related properties via the maximum principle*, Comm. Math. Phys.**68**(1979), no. 3, 209–243. MR**544879****[4]**Andrzej Granas, Ronald Guenther, and John Lee,*Nonlinear boundary value problems for ordinary differential equations*, Dissertationes Math. (Rozprawy Mat.)**244**(1985), 128. MR**808227****[5]**Philip Hartman,*Ordinary differential equations*, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR**0171038****[6]**M. A. Krasnosel′skiĭ,*Positive solutions of operator equations*, Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron, P. Noordhoff Ltd. Groningen, 1964. MR**0181881****[7]**Man Kam Kwong,*Uniqueness of positive solutions of Δ𝑢-𝑢+𝑢^{𝑝}=0 in 𝑅ⁿ*, Arch. Rational Mech. Anal.**105**(1989), no. 3, 243–266. MR**969899**, 10.1007/BF00251502**[8]**P.-L. Lions,*On the existence of positive solutions of semilinear elliptic equations*, SIAM Rev.**24**(1982), no. 4, 441–467. MR**678562**, 10.1137/1024101**[9]**Wei-Ming Ni and Roger D. Nussbaum,*Uniqueness and nonuniqueness for positive radial solutions of Δ𝑢+𝑓(𝑢,𝑟)=0*, Comm. Pure Appl. Math.**38**(1985), no. 1, 67–108. MR**768105**, 10.1002/cpa.3160380105**[10]**Paul H. Rabinowitz,*Minimax methods in critical point theory with applications to differential equations*, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR**845785**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34B15,
34A12

Retrieve articles in all journals with MSC: 34B15, 34A12

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1995-1301018-5

Keywords:
Two-point boundary value problem,
positive solutions,
uniqueness

Article copyright:
© Copyright 1995
American Mathematical Society