Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Wedderburn decompositions of commutative Banach algebras


Author: Michel Solovej
Journal: Proc. Amer. Math. Soc. 123 (1995), 3305-3315
MSC: Primary 46J05; Secondary 46J40
MathSciNet review: 1301049
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if A is a commutative Banach algebra with $ \operatorname{rad}{(A)^2} = 0$ and $ A/\operatorname{rad}(A) = C([0,1])$ for the unit interval [0, 1], then A has a strong Wedderburn decomposition.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J05, 46J40

Retrieve articles in all journals with MSC: 46J05, 46J40


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1995-1301049-5
PII: S 0002-9939(1995)1301049-5
Article copyright: © Copyright 1995 American Mathematical Society