Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Wedderburn decompositions of commutative Banach algebras


Author: Michel Solovej
Journal: Proc. Amer. Math. Soc. 123 (1995), 3305-3315
MSC: Primary 46J05; Secondary 46J40
DOI: https://doi.org/10.1090/S0002-9939-1995-1301049-5
MathSciNet review: 1301049
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if A is a commutative Banach algebra with $ \operatorname{rad}{(A)^2} = 0$ and $ A/\operatorname{rad}(A) = C([0,1])$ for the unit interval [0, 1], then A has a strong Wedderburn decomposition.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J05, 46J40

Retrieve articles in all journals with MSC: 46J05, 46J40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1301049-5
Article copyright: © Copyright 1995 American Mathematical Society