Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Bounded sets in (LF)-spaces


Authors: José Bonet and Carmen Fernández
Journal: Proc. Amer. Math. Soc. 123 (1995), 3717-3723
MSC: Primary 46A13
DOI: https://doi.org/10.1090/S0002-9939-1995-1277098-2
MathSciNet review: 1277098
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The behaviour of bounded sets is important in the theory of countable inductive limits of Fréchet spaces, the (LF)-spaces, and its applications. An (LF)-space is called regular if every bounded set is contained and bounded in one of the steps. In the present paper necessary conditions and sufficient conditions are given for the regularity of an (LF)-space. The conditions are expressed in terms of the behaviour of the neighbourhoods of the steps. It is proved that the conditions are equivalent for (LF)-spaces of sequences or of continuous functions.


References [Enhancements On Off] (What's this?)

  • [1] K. D. Bierstedt, An introduction to locally convex inductive limits, Functional Analysis and its Applications (Nice 1986), Singapore, New Jersey and Hong Kong, 1988, pp. 35-133. MR 979516 (90a:46004)
  • [2] K. D. Bierstedt and J. Bonet, Weighted (LF)-spaces of continuous functions, Math. Nachr. 165 (1994), 25-48. MR 1261361 (95a:46033)
  • [3] K. D. Bierstedt, R. Meise, and W. H. Summers, A projective description of weighted inductive, limits, Trans. Amer. Math. Soc. 272 (1982), 107-160. MR 656483 (84g:46037)
  • [4] -, Köthe sets and Köthe sequence spaces, Functional Analysis, Holomorphy and Approximation Theory, North-Holland Math. Stud., vol. 71, North-Holland, Amsterdam and New York, 1982, pp. 27-91. MR 691159 (84f:46011)
  • [5] J. Bonet and S. Dierolf, On (LB)-spaces of Moscatelli type, Doga Mat. 13 (1989), 9-33. MR 1016649 (91b:46004)
  • [6] J. Bonet, S. Dierolf, and C. Fernández, On two classes of (LF)-spaces, Portugal. Mat. 49 (1992), 109-130. MR 1165925 (93f:46002)
  • [7] J. Dieudonné and L. Schwartz, La dualité dans les espaces (F) et (LF), Ann. Inst. Fourier (Grenoble) 1 (1954), 47-65. MR 0038553 (12:417d)
  • [8] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., no. 16, Amer. Math. Soc., Providence, RI, 1955. MR 0075539 (17:763c)
  • [9] K. Floret, Some aspects of the theory of locally convex inductive limits, Functional Analysis, Surveys and Recent Results II, North-Holland Math. Stud., vol. 38, North-Holland, Amsterdam and New York, 1980, pp. 205-237. MR 565407 (81j:46009)
  • [10] J. Kucera and K. McKennon, Bounded sets in inductive limits, Proc. Amer. Math. Soc. 69 (1978), 62-64. MR 0463937 (57:3875)
  • [11] -, Dieudonné-Schwartz theorem on bounded sets in inductive limits, Proc. Amer. Math. Soc. 78 (1980), 366-368. MR 553378 (81d:46007)
  • [12] J. Kucera and C. Bosch, Dieudonné-Schwartz theorem on bounded sets in inductive limits II, Proc. Amer. Mat. Soc. 86 (1982), 392-394. MR 671201 (84b:46005)
  • [13] Y. Melendez, On generalized (LF)-spaces of Moscatelli type, Doga Mat. 15 (1991), 172-192. MR 1136187 (92k:46009)
  • [14] P. Pérez Carreras and J. Bonet, Barrelled locally convex spaces, North-Holland Math. Stud., vol. 131, North-Holland, Amsterdam and New York, 1987. MR 880207 (88j:46003)
  • [15] Qiu Jing Hui, Dieudonné Schwartz theorem in inductive limits of metrizable spaes, Proc. Amer. Math. Soc. 92 (1984), 255-257. MR 754714 (85i:46007)
  • [16] -, Dieudonné-Schwartz theorem in inductive limits of metrizable spaces II, Proc. Amer. Math. Soc. 108 (1990), 172-175. MR 994779 (90e:46004)
  • [17] D. Vogt, Regularity properties in (LF)-spaces, Progress in Functional Analysis, North-Holland Math. Stud., vol. 170, North-Holland, Amsterdam and New York, 1992, pp. 57-84. MR 1150738 (93b:46012)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46A13

Retrieve articles in all journals with MSC: 46A13


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1277098-2
Keywords: Fréchet spaces, (LF)-spaces, regularity and completeness, condition (M) of Retakh, Köthe sequence (LF)-spaces, weighted inductive limits
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society