THE BEREZIN SYMBOL AND MULTIPLIERS
OF FUNCTIONAL HILBERT SPACES

SEMRA KILIÇ

(Communicated by Palle E. T. Jorgensen)

Abstract. This paper focuses on a multiplicative property of the Berezin symbol \tilde{A}, of a given linear map $A : \mathcal{H} \to \mathcal{H}$, where \mathcal{H} is a functional Hilbert space of analytic functions. We show $\tilde{A}B = \tilde{AB}$ for all B in $\mathcal{B}(\mathcal{H})$ if and only if A is a multiplication operator M_φ, where φ is a multiplier. We also present a version of this result for vector-valued functional Hilbert spaces.

1. Introduction

Let n be a fixed positive integer and let Ω be a region in \mathbb{C}^n. A functional Hilbert space \mathcal{H} is a Hilbert space of analytic functions on Ω such that the point evaluations are bounded, linear functionals. By the Riesz-representation theorem there exists, for each z in Ω, a unique element K_z of \mathcal{H} such that $f(z) = \langle f, K_z \rangle$ for all f in \mathcal{H}. The function K on $\Omega \times \Omega$, defined by $K(z, w) = K_w(z)$, is called the reproducing kernel function of \mathcal{H}. Let $k_z = \frac{K_z}{\|K_z\|}$ be the normalized reproducing kernel function. For a given linear map $A : \mathcal{H} \to \mathcal{H}$, the Berezin symbol \tilde{A} (see [1]) of a map A of \mathcal{H} into itself is defined by

$$\tilde{A}(z) = \langle Ak_z, k_z \rangle.$$

It is known that the map $A \mapsto \tilde{A}$ is injective (see [3]). A function φ defined on Ω is a multiplier of \mathcal{H} if $\varphi \cdot f$ is in \mathcal{H}, for all f in \mathcal{H}. Let $\mathcal{B}(\mathcal{H})$ denote the set of all bounded, linear operators from \mathcal{H} into \mathcal{H}. The multiplication operator $M_\varphi : \mathcal{H} \to \mathcal{H}$ defined by $M_\varphi f = \varphi \cdot f$ is in $\mathcal{B}(\mathcal{H})$, when φ is a multiplier of \mathcal{H}.

2. The multiplicative property of the Berezin symbol on a functional Hilbert space

Theorem 1. Let A be a bounded operator on \mathcal{H}. Then

$$\tilde{AB}(z) = \tilde{A}(z)\tilde{B}(z)$$
for all B in $\mathcal{B}(H)$ if and only if A is a multiplication operator, M_{φ}, where φ is a multiplier. Moreover, $\varphi = \tilde{A}$.

Before proceeding with the proof, we need the following:

Lemma 1. When φ is a multiplier of H, $\tilde{M}_{\varphi}(z) = \varphi(z)$.

Proof. $\tilde{M}_{\varphi}(z) = (M_{\varphi}k_z, k_z) = (\varphi k_z, k_z) = \varphi(z)$.

Lemma 2. The Berezin symbol of $f \otimes g$, for f, g in H, is

$$(f \otimes g)(z) = \frac{g(z)}{\|K_z\|^2} f(z), \quad z \in \Omega.$$

Proof. For f and g in H and z in Ω,

$$(f \otimes g)(z) = \left\langle (f \otimes g) \frac{K_z}{\|K_z\|^2} \frac{K_z}{\|K_z\|^2} \right\rangle = \frac{1}{\|K_z\|^2} \langle K_z, g \rangle \langle f, K_z \rangle.$$

By the reproducing property of the kernel function, we have

$$(f \otimes g)(z) = \frac{g(z)}{\|K_z\|^2} f(z), \quad f, q \in H.$$

Proof of Theorem 1. Suppose $\tilde{A}B(z) = \tilde{A}(z)B(z)$ for all B in $\mathcal{B}(H)$. Let $B = f \otimes g$ for f and g in H. Then, by Lemma 2,

$$\tilde{A}B(z) = (Af \otimes g)(z) = \frac{g(z)}{\|K_z\|^2} (Af)(z).$$

By the hypothesis, we have

$$\frac{g(z)}{\|K_z\|^2} (Af)(z) = \frac{g(z)}{\|K_z\|^2} \tilde{A}(z)f(z),$$

which reduces to

$$(Af)(z) = \tilde{A}(z)f(z)$$

for all f in H. Hence $A = M_{\tilde{A}}$.

Conversely, if A is a multiplication operator, M_{φ}, where φ is a multiplier,

$$\tilde{M}_{\varphi}B = (M_{\varphi}Bk_z, k_z) = \varphi(z) \frac{Bk_z}{\|K_z\|}(z)$$

for all B in $\mathcal{B}(H)$. By Lemma 1, we have

$$\tilde{M}_{\varphi}B(z) = \tilde{M}_{\varphi}(z)B(z)$$

for all B in $\mathcal{B}(H)$.

Corollary 1. Let B be in $\mathcal{B}(H)$. Then

$$\tilde{A}B(z) = \tilde{A}(z)B(z)$$

for all A in $\mathcal{B}(H)$ if and only if $B = M_{\psi}^*$, where ψ is a multiplier.

Proof. The assertion follows from Theorem 1 and the fact that $\tilde{T}^*(z) = \tilde{T}(z)$, for all T in $\mathcal{B}(H)$.
The Hardy space H^2 consists of the complex-valued analytic functions on the unit disk D such that the Taylor coefficients are square summable. A calculation shows that $K_z = \frac{1}{1 - z \overline{w}}$ has the reproducing property (see [4]). Let P denote the orthogonal projection of $L^2(\partial D)$ onto H^2, and let ϕ be a bounded measurable function. Then the Toeplitz operator, T_ϕ, induced by ϕ is defined by $T_\phi f = P(\phi f)$, for all f in H^2.

Corollary 2. Let A be a bounded operator on H^2. Then

$$\widehat{AB}(z) = \widehat{A}(z)\widehat{B}(z)$$

for all B in $\mathcal{B}(H^2)$ if and only if A is a Toeplitz operator, T_ϕ, induced by ϕ in H^∞. Moreover $\phi = \widehat{A}$.

Proof. The multiplication operators on H^2 are the analytic Toeplitz operators.

We should mention that Corollary 2 is also true if one replaces H^2 by the Bergman space or any of the weighted Bergman spaces. (For analytic Toeplitz operators on weighted Bergman spaces see [6].)

3. The multiplicative property of the Berezin symbol on the analytic reproducing kernel space, $\mathcal{H} = \mathcal{H}_0 \otimes \mathbb{C}$

Let \mathcal{H}_0 be a functional Hilbert space of (scalar-valued) analytic functions on Ω with the reproducing kernel function K_z, for each fixed z in Ω. Let \mathbb{C} be a separable Hilbert space, and let \mathcal{H} be the functional Hilbert space of \mathbb{C}-valued functions, $\mathcal{H} = \mathcal{H}_0 \otimes \mathbb{C}$. The reproducing kernel function of \mathcal{H}, $J_z: \mathbb{C} \rightarrow \mathcal{H}$, is defined by $J_z(u) = K_z \otimes u$, where u is in \mathbb{C}.

The evaluation functional $E_z: \mathcal{H} \rightarrow \mathbb{C}$, defined by $E_z f = f(z)$, for z in Ω, is bounded (see [2], Lemma 3.2). For $f \in \mathcal{H}$, u in \mathbb{C}, we have

$$\langle f, E_z^* u \rangle_\mathcal{H} = \langle f(z), u \rangle_\mathbb{C}.$$

We also have the reproducing property of the kernel function, that is

$$\langle f, J_z(u) \rangle_\mathcal{H} = \langle f(z), u \rangle_\mathbb{C}.$$

Therefore, $E_z^* u = J_z(u)$, for all u in \mathbb{C}. By the reproducing property of the kernel function, we have $\|J_z(u)\|^2 = K_z(z)\|u\|^2$, where u is in \mathbb{C}, and hence $\|J_z\| = \sqrt{K_z(z)} = \|E_z\|$.

Let $\mathcal{H}_z = \frac{1}{\|J_z\|}$ be the normalized reproducing kernel function, and let A be a bounded linear operator on \mathcal{H}. Then the Berezin symbol \widehat{A} of A is defined by

$$\widehat{A}(z) = \mathcal{H}_z^* A \mathcal{H}_z.$$

Lemma 3. An operator A is a multiplication operator if and only if, for each fixed z in Ω, $A^* E_z^* = E_z^* \Phi(z)$, for some operator $\Phi(z)$ in $\mathcal{B}(\mathbb{C})$. Moreover, in this case, A is the operator of multiplication by the function $z \mapsto \Phi(z)$.

Proof. Let z be fixed in Ω. Suppose A is a multiplication operator, M_Φ, induced by $\Phi: \Omega \rightarrow \mathcal{B}(\mathbb{C})$. We observe that

$$E_z M_\Phi f = M_\Phi f(z) = \Phi(z)f(z) = \Phi(z)E_z f$$

for all f in \mathcal{H}.

Then we have $E_z M_\Phi = \Phi(z)E_z$, for some operator $\Phi(z)$ in $\mathcal{B}(\mathbb{C})$.

Conversely, let A be a bounded operator on \mathscr{H} such that $A^*E_z^* = E_z^*\Phi(z)^*$ for some operator $\Phi(z)$ in $\mathscr{B}(\mathbb{C})$. For u in \mathscr{C}, we have

$$\langle f, A^*E_z^*u \rangle_{\mathscr{H}} = \langle Af, E_z^*u \rangle_{\mathscr{H}} = \langle (Af)(z), u \rangle_{\mathscr{H}}$$

for all f in \mathscr{H}. On the other hand, for u in \mathscr{C}, we have $\langle f, E_z^*\Phi(z)^*u \rangle = \langle \Phi(z)f(z), u \rangle$, for all f in \mathscr{H}. Then $\langle (Af)(z), u \rangle = \langle \Phi(z)f(z), u \rangle$, for all f in \mathscr{H} and u in \mathscr{C}. Therefore, $(Af)(z) = \Phi(z)f(z)$, for all f in \mathscr{H}.

Theorem 2. Let A be a bounded operator on \mathscr{H}. Then

$$\widetilde{AB}(z) = \tilde{A}(z)\tilde{B}(z)$$

for all B in $\mathscr{B}(\mathscr{H})$ if and only if $A = M_\Phi$, where $\Phi: \Omega \mapsto \mathscr{B}(\mathbb{C})$.

Proof. We observe that $E_zM_\Phi f = \Phi(z)f(z)$, for all f in \mathscr{H}. Then $E_zM_\Phi E_z^* = \Phi(z)E_zE_z^*$ and $E_zM_\Phi BE_z^* = \Phi(z)E_zB E_z^*$, for all B in $\mathscr{B}(\mathscr{H})$. Since $E_zE_z^* = K_z(z)I_\mathscr{H}$, we have $M_\Phi = \Phi(z)$ and

$$M_\Phi B(z) = \Phi(z)\frac{E_zBE_z^*}{\|z\|^2} = \tilde{M}_\Phi(z)\tilde{B}(z)$$

for all B in $\mathscr{B}(\mathscr{H})$.

Conversely, suppose that A is a bounded operator such that $\widetilde{AB}(z) = \tilde{A}(z)\tilde{B}(z)$ for all B in $\mathscr{B}(\mathscr{H})$. Then from the definitions, we get

$$E_zABE_z^* = \frac{1}{\|z\|^2}E_zAE_zE_zBE_z^*$$

for all B in $\mathscr{B}(\mathscr{H})$.

For u and v in \mathscr{C}, we have

$$\langle E_zABE_z^* u, v \rangle = \left(\frac{E_zAE_z^*}{\|z\|^2}E_zBE_z^* u, v \right) = \langle \tilde{A}(z)E_zBE_z^* u, v \rangle.$$

Then we have

$$\langle BE_z^* u, A^*E_z^* v \rangle = \langle BE_z^* u, E_z^*\tilde{A}(z)^* v \rangle.$$

For each fixed nonzero u, $BE_z^* u$ runs through all vectors in \mathscr{H} as B runs through all elements of $\mathscr{B}(\mathscr{H})$. Thus we see that $A^*E_z^* = E_z^*\tilde{A}(z)^*$, for all z in Ω. Therefore A is a multiplication operator, $M_\tilde{A}$, by Lemma 3.

Let us note that if we take \mathscr{C} to be \mathbb{C} and define $\tilde{A}_z = k_z \otimes 1$, the sufficiency proof of Theorem 2 will also work for Theorem 1, the scalar-valued case.

Let $\mathbb{N} = \{0, 1, 2, \ldots \}$ denote the set of nonnegative integers. The set \mathbb{N}^n is partially ordered by setting $I = (i_1, i_2, \ldots, i_n) \geq (j_1, j_2, \ldots, j_n) = J$ if and only if $i_k \geq j_k$ for $k = 1, 2, \ldots, n$. If $z = (z_1, z_2, \ldots, z_n) \in \Omega$, then we set $z^I = z_1^{i_1}z_2^{i_2} \cdots z_n^{i_n}$. We denote by $H^2(n) \otimes \mathbb{C}$, where $H^2(n) = H^2 \otimes H^2 \otimes \cdots \otimes H^2$ (n copies), the set of all vector-valued analytic functions $f: D^n \mapsto \mathbb{C}$ with power series expansion $f(z) = \sum_{I \in \mathbb{N}^n} z^Iv_I$, with v_I in \mathscr{C} and z in D^n, such that $\sum_{I \in \mathbb{N}^n} \|v_I\|_{\mathscr{F}}^2 < \infty$.

The space $H^2(n) \otimes \mathbb{C}$ is a Hilbert space with the reproducing kernel function, $J_z: \mathscr{C} \mapsto H^2(n) \otimes \mathbb{C}$, for z in D^n, defined by $J_z(u) = K_z \otimes u$, where u is in \mathscr{C} and $K_z(u) = \sum_{I \in \mathbb{N}^n} z^I w_I$ is the reproducing kernel function for $H^2(n)$ (see [5]). Let $H^\infty(n)(\mathscr{B}(\mathbb{C}))$ denote the Banach space of all bounded analytic functions $\Phi: D^n \mapsto \mathscr{B}(\mathbb{C})$ with the norm $\|\Phi\|_\infty = \sup\{\|\Phi(z)\|, \text{ for } z \in D^n\}$.
For every Φ in $H^\infty(n)(\mathcal{B}(\mathbb{C}))$, we can define the analytic Toeplitz operator T_Φ in $\mathcal{B}(H^2(n) \otimes \mathbb{C})$ as follows:

$$(T_\Phi f)(z) = \Phi(z)f(z), \quad z \in \mathbb{D}^n, f \in H^2(n) \otimes \mathbb{C}.$$

For the boundedness of the map T_Φ see [2].

Corollary 3. Let A be a bounded operator on $H^2(n) \otimes \mathbb{C}$. Then

$$A\overline{B}(z) = \overline{A}(z)B(z)$$

for all B in $\mathcal{B}(H^2(n) \otimes \mathbb{C})$ if and only if $A = T_\Phi$, where Φ is in $H^\infty(n)(\mathcal{B}(\mathbb{C}))$.

Acknowledgment

I thank my thesis advisor, Eric Nordgren, for his encouragement and support throughout my work. Also, I thank the referee for several helpful suggestions.

References

1. F. A. Berezin, *Covariant and contravariant symbols for operators*, Math. USSR-Izv. 6 (1972), 1117–1151.

Department of Mathematics, University of New Hampshire, Durham, New Hampshire 03824

Current address: Simon's Rock College of Bard, 84 Alford Rd., Great Barrington, Massachusetts 01230-9702