norms of the Borel transform and the decomposition of measures

Author:
B. Simon

Journal:
Proc. Amer. Math. Soc. **123** (1995), 3749-3755

MSC:
Primary 44A15; Secondary 28A10

MathSciNet review:
1277133

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We relate the decomposition over [*a*, *b*] of a measure (on ) into absolutely continuous, pure point, and singular continuous pieces to the behavior of integrals as . Here *F* is the Borel transform of , that is, .

**[1]**R. del Rio, S. Jitomirskaya, Y. Last, and B. Simon,*Operators with singular continuous spectrum*, IV.*Hausdorff dimension, rank one perturbations, and localizations*(in preparation).**[2]**Tosio Kato,*Wave operators and similarity for some non-selfadjoint operators*, Math. Ann.**162**(1965/1966), 258–279. MR**0190801****[3]**Yitzhak Katznelson,*An introduction to harmonic analysis*, Second corrected edition, Dover Publications, Inc., New York, 1976. MR**0422992****[4]**Abel Klein,*Extended states in the Anderson model on the Bethe lattice*, Adv. Math.**133**(1998), no. 1, 163–184. MR**1492789**, 10.1006/aima.1997.1688**[5]**Paul Koosis,*Introduction to 𝐻_{𝑝} spaces*, London Mathematical Society Lecture Note Series, vol. 40, Cambridge University Press, Cambridge-New York, 1980. With an appendix on Wolff’s proof of the corona theorem. MR**565451****[6]**Michael Reed and Barry Simon,*Methods of modern mathematical physics. IV. Analysis of operators*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR**0493421****[7]**Barry Simon,*Operators with singular continuous spectrum. I. General operators*, Ann. of Math. (2)**141**(1995), no. 1, 131–145. MR**1314033**, 10.2307/2118629**[8]**Barry Simon,*Spectral analysis of rank one perturbations and applications*, Mathematical quantum theory. II. Schrödinger operators (Vancouver, BC, 1993) CRM Proc. Lecture Notes, vol. 8, Amer. Math. Soc., Providence, RI, 1995, pp. 109–149. MR**1332038****[9]**Tudor Zamfirescu,*Most monotone functions are singular*, Amer. Math. Monthly**88**(1981), no. 1, 47–49. MR**619420**, 10.2307/2320713

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
44A15,
28A10

Retrieve articles in all journals with MSC: 44A15, 28A10

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1995-1277133-1

Article copyright:
© Copyright 1995
American Mathematical Society