Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Teichmüller flow is Hamiltonian


Author: Howard Masur
Journal: Proc. Amer. Math. Soc. 123 (1995), 3739-3747
MSC: Primary 32G15; Secondary 30F60, 58F05
DOI: https://doi.org/10.1090/S0002-9939-1995-1283559-2
MathSciNet review: 1283559
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the Teichmuller flow on the cotangent bundle over Teichmuller space coincides with the Hamiltonian flow defined by the function which gives the length of a cotangent vector.


References [Enhancements On Off] (What's this?)

  • [1] L. Bers, Quasiconformal mappings and Teichmullers theorem, Analytic Functions (R. Nevanlinna et al., eds.), Princeton Univ. Press, Princeton, NJ, 1960. MR 0114898 (22:5716)
  • [2] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic theory, Springer-Verlag, Berlin. MR 832433 (87f:28019)
  • [3] F. Gardiner, Quadratic differentials, Wiley, New York, 1987. MR 903027 (88m:32044)
  • [4] J. Hubbard and H. Masur, Quadratic differentials and measured foliations, Acta. Math. 142 (1979), 221-274. MR 523212 (80h:30047)
  • [5] H. Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), 169-200. MR 644018 (83e:28012)
  • [6] H. Masur and J. Smillie, Hausdorff dimension of spaces of nonergodic measured foliation, Ann. of Math. (2) 134 (1991), 455-543. MR 1135877 (92j:58081)
  • [7] H. Royden, Automorphisms and isometries of Teichmuller space, Ann. of Math. Stud., no. 66, Princeton Univ. Press, Princeton, NJ, 1971, pp. 369-384. MR 0288254 (44:5452)
  • [8] W. Veech, The Teichmuller geodesic flow, Ann. of Math. (2) 124 (1986), 441-530. MR 866707 (88g:58153)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32G15, 30F60, 58F05

Retrieve articles in all journals with MSC: 32G15, 30F60, 58F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1283559-2
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society