On the depth of blowup algebras of ideals with analytic deviation one

Author:
Santiago Zarzuela

Journal:
Proc. Amer. Math. Soc. **123** (1995), 3639-3647

MSC:
Primary 13A30; Secondary 13C15, 13D45, 13H10

DOI:
https://doi.org/10.1090/S0002-9939-1995-1286012-5

MathSciNet review:
1286012

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let *I* be an ideal in a local Cohen-Macaulay ring . Assume *I* to be generically a complete intersection of positive height. We compute the depth of the Rees algebra and the form ring of *I* when the analytic deviation of *I* equals one and its reduction number is also at most one. The formulas we obtain coincide with the already known formulas for almost complete intersection ideals.

**[1]**P. Brumatti, A. Simis, and W. V. Vasconcelos,*Normal Rees algebras*, J. Algebra**112**(1988), 26-48. MR**921962 (89b:13011)****[2]**M. Brodmann,*Rees rings and form rings of almost complete intersections*, Nagoya Math. J.**88**(1982), 1-16. MR**683240 (84f:13017)****[3]**S. Goto and Y. Shimoda,*On the Gorensteinness of Rees and form rings of almost complete intersections*, Nagoya Math. J.**92**(1983), 69-88. MR**726141 (85d:13033)****[4]**S. Goto and S. Huckaba,*On graded rings associated to analytic deviation one ideals*, Amer. J. Math.**116**(1994), 905-914. MR**1287943 (95h:13003)****[5]**S. Goto and Y. Nakamura,*On the Gorensteinness of graded rings associated to ideals of analytic deviation one*, Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 51-72. MR**1266179 (95b:13006)****[6]**-,*Gorenstein graded rings associated to ideals of analytic deviation two*, preprint.**[7]**M. Herrmann, S. Ikeda, and U. Orbanz,*Equimultiplicity and blowing up*, Springer-Verlag, New York, 1988. MR**954831 (89g:13012)****[8]**M. Herrmann, B. Moonen, and O. Villamayor,*Ideals of linear type and some variants*, The Curves Seminar at Queen's, Queen's Papers in Pure and Appl. Math., vol. 6, Queen's Univ., Kingston, Ontario, 1989, p. 83. MR**1036038 (91b:13010)****[9]**M. Herrmann, J. Ribbe, and S. Zarzuela,*On Rees and form rings of almost complete intersections*, Comm. Algebra**21**(1993), 647-664. MR**1199696 (93k:13007)****[10]**J. Herzog, A. Simis, and W. V. Vasconcelos,*Approximation complexes of blowing up rings*, J. Algebra**74**(1982), 466-493. MR**647249 (83h:13023)****[11]**-,*Approximation complexes of blowing up rings*II, J. Algebra**82**(1983), 53-83. MR**701036 (85b:13015)****[12]**L. T. Hoa and S. Zarzuela,*Reduction number and a-invariant of good filtrations*, Comm. Algebra**22**(1994), 5635-5656. MR**1298739 (95m:13002)****[13]**S. Huckaba,*Analytic spread modulo an element and symbolic Rees algebras*, J. Algebra**128**(1990), 306-320. MR**1036393 (90k:13006)****[14]**S. Huckaba and C. Huneke,*Powers of ideals having small analytic deviation*, Amer. J. Math.**114**(1992), 367-403. MR**1156570 (93g:13002)****[15]**-,*Rees algebras of ideals having small analytic deviation*, Trans. Amer. Math. Soc.**339**(1993), 373-402. MR**1123455 (93k:13008)****[16]**S. Huckaba and T. Marley,*Depth formulas for certain graded rings associated to an ideal*, Nagoya Math. J.**133**(1994), 57-69. MR**1266362 (95d:13015)****[17]**S. Noh and W. V. Vasconcelos,*The*-*closure of a Rees algebra*, Results in Math.**23**(1993), 149-161. MR**1205761 (94a:13003)****[18]**K. Raghavan,*Powers of ideals generated by quadratic sequences*, Trans. Amer. Math. Soc.**343**(1994), 727-747. MR**1188639 (94i:13007)****[19]**J. Ribbe, Thesis, Universitat zu Köln, 1991.**[20]**A. Simis, B. Ulrich, and W. V. Vasconcelos,*Cohen-Macaulay Rees algebras and degrees of polynomial relations*, Math. Ann.**301**(1995), 421-444. MR**1324518 (96a:13005)****[21]**N. V. Trung,*Reduction number, a-invariant and Rees algebras of ideals having small analytic deviation*, Commutative Algebra (A. Simis, N. V. Trung, and G. Valla, eds.), World Scientific, Singapore, 1984. MR**1421090 (97f:13007)****[22]**B. Ulrich,*Artin-Nagata properties and reductions of ideals*, Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 373-400. MR**1266194 (95a:13017)****[23]**G. Valla,*A property of almost complete intersections*, Quart. J. Math. Oxford Ser. (2)**33**(1982), 487-492. MR**679817 (84c:13013)****[24]**W. V. Vasconcelos,*Hilbert functions, analytic spread, and Koszul homology*, Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 401-422. MR**1266195 (95a:13006)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
13A30,
13C15,
13D45,
13H10

Retrieve articles in all journals with MSC: 13A30, 13C15, 13D45, 13H10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1286012-5

Keywords:
Rees algebras,
form rings,
depth,
analytic deviation,
reduction number

Article copyright:
© Copyright 1995
American Mathematical Society