Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Jacobian elliptic functions and minimal surfaces

Author: Faruk F. Abi-Khuzam
Journal: Proc. Amer. Math. Soc. 123 (1995), 3837-3849
MSC: Primary 53A10; Secondary 33E05
MathSciNet review: 1301004
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using Jacobian elliptic functions we construct families of complete immersed minimal surfaces, with one, two or three ends and a non-trivial symmetry group.

References [Enhancements On Off] (What's this?)

  • [1] L. Barbosa and G. Colares, Minimal surfaces in $ {\mathbb{R}^3}$, Lecture Notes in Math., vol. 1195, Springer-Verlag, Berlin and New York, 1986.
  • [2] C. Costa, Example of a complete minimal immersion in $ {\mathbb{R}^3}$ of genus one and three embedded ends, Bol. Soc. Brasil Mat. 15 (1984), 47-54. MR 794728 (87c:53111)
  • [3] C. C. Chen and F. Gackstätter, Elliptische und hyperelliptische Funktionen und vollständige Minimalflächen vom Enneperschen Typ., Math. Ann. 259 (1982), 359-369. MR 661204 (84d:53005)
  • [4] D. Hoffman and W. Meeks III, A complete embedded minimal surface in $ {\mathbb{R}^3}$ with genus one and three ends, J. Differential Geom. 21 (1985), 109-127. MR 806705 (87d:53008)
  • [5] L. Jorge and W. Meeks III, The topology of complete minimal surfaces of finite total Gaussian curvature, Topology 22 (1983), 203-221. MR 683761 (84d:53006)
  • [6] R. Osserman, A survey of minimal surfaces, 2nd ed., Dover, New York, 1986. MR 852409 (87j:53012)
  • [7] M. Wohlgemuth, Abelsche Minimalflaschen, Diplomarbeit Universität Bonn, 1987.
  • [8] E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th ed., Cambridge Univ. Press, London and New York, 1927. MR 1424469 (97k:01072)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53A10, 33E05

Retrieve articles in all journals with MSC: 53A10, 33E05

Additional Information

Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society