Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

A natural orthogonal basis of eigenfunctions of the Hecke algebra acting on Cayley graphs


Author: Jing Hua Kuang
Journal: Proc. Amer. Math. Soc. 123 (1995), 3615-3622
MSC: Primary 11L99; Secondary 05C25, 11F25, 20G05
MathSciNet review: 1301511
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper discusses the representation of the Hecke algebra of $ {\text{GL}_2}({\mathbb{F}_q})$ on a class of Cayley graphs and gives a natural construction of an orthogonal basis of simultaneous eigenfunctions whose eigenvalues are the Soto-Andrade Sums.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11L99, 05C25, 11F25, 20G05

Retrieve articles in all journals with MSC: 11L99, 05C25, 11F25, 20G05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1995-1301511-5
PII: S 0002-9939(1995)1301511-5
Keywords: Hecke algebra, eigenfunctions, Soto-Andrade sums
Article copyright: © Copyright 1995 American Mathematical Society