Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On characteristics of circle invariant presymplectic forms


Authors: Augustin Banyaga and Philippe Rukimbira
Journal: Proc. Amer. Math. Soc. 123 (1995), 3901-3906
MSC: Primary 53C15; Secondary 58F05
DOI: https://doi.org/10.1090/S0002-9939-1995-1307491-0
MathSciNet review: 1307491
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a circle-invariant exact 2-form of rank 2n on a compact $ (2n + 1)$-dimensional manifold admits two closed characteristics. This solves a particular case of a generalized Weinstein conjecture.


References [Enhancements On Off] (What's this?)

  • [BAN] A. Banyaga, A note on Weinstein conjecture, Proc. Amer. Math. Soc. 109 (1990), 855-858. MR 1021206 (90m:58170)
  • [BAN1] -, On characteristics of hypersurfaces in symplectic manifolds, Proc. Sympos. Pure Math., vol. 59, Part 2, Amer. Math. Soc., Providence, RI, 1993, pp. 4-17. MR 1216525 (94f:53048)
  • [BEN] D. Bennequin, Entrelacements et équations de Pfaff, Astérisque 107-108 (1983), 83-161. MR 753131 (86e:58070)
  • [BEN1] -, Quelques remarques simples sur la rigidit é symplectique, Géométrie Symplectique et de Contact: Autour du théorème de Poincaré-Birkhoff, Travaux en Cours (Dazord, Desolneux, and Moulis, eds.), Hermann, Paris, 1984, pp. 1-50.
  • [BLA] D. Blair, Contact manifolds in riemannian geometry, Lectures Notes in Math., vol 509, Springer, New York, 1976. MR 0467588 (57:7444)
  • [ELI] Y. Eliashberg, Contact 3-manifolds twenty years since J. Martinet's work, Ann. Inst. Fourier (Grenoble) 42 (1992), 165-192. MR 1162559 (93k:57029)
  • [HVI] H. Hofer and C. Viterbo, The Weinstein conjecture in the cotangent bundles and related results, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), 411-445. MR 1015801 (91b:58208)
  • [HOV] -, The Weinstein conjecture in the presence of holomorphic spheres, Comm. Pure Appl. Math. 45 (1992), 583-622. MR 1162367 (93h:58055)
  • [HOF] H. Hofer, Pseudoholomorphic curves in symplectizations with application to the Weinstein conjecture in dimension three, preprint. MR 1244912 (94j:58064)
  • [LUT] R. Lutz, Sur la géométrie des structures de contact invariantes, Ann. Inst. Fourier (Grenoble) 29 (1979), 283-306. MR 526789 (82j:53067)
  • [RAB] P. Rabinowitz, Periodic solutions of hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), 157-184. MR 0467823 (57:7674)
  • [RUK] P. Rukimbira, Some remarks on R-contact flows, Ann. Global Anal. Geom. 11 (1993), 165-171. MR 1225436 (94h:53043)
  • [VIT] C. Viterbo, A proof of Weinstein conjecture in $ {{\mathbf{R}}^{2n}}$, Ann. Inst. H. Poincaré, Anal. Non Linéaire 4 (1987), 337-356. MR 917741 (89d:58048)
  • [WEI] A. Weinstein, On the hypothesis of Rabinowitz's periodic orbit theorem, J. Differential Equations 33 (1978), 353-358.
  • [ZEH] E. Zehnder, Remarks on periodic solutions on hypersurfaces, Periodic Solutions of Hamiltonian Systems and Related Topics (P. Rabinowitz et al., eds.), Reidel, Dordrecht, 1987, pp. 267-279. MR 920629 (89b:58083)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C15, 58F05

Retrieve articles in all journals with MSC: 53C15, 58F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1307491-0
Keywords: Presymplectic form, characteristics, generalized Weinstein conjecture
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society